
Accelerating Massive MIMO Uplink Detection on GPU for SDR Systems

Kaipeng Li∗, Bei Yin∗, Michael Wu∗, Joseph R. Cavallaro∗, and Christoph Studer†
∗Dept. of Electrical and Computer Engineering, Rice University, Houston, TX, USA
†School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA

Abstract—We present a reconfigurable GPU-based uplink detector for
massive MIMO software-defined radio (SDR) systems. To enable high
throughput, we implement a configurable linear minimum mean square
error (MMSE) soft-output detector and reduce the complexity without
sacrificing its error-rate performance. To take full advantage of the GPU
computing resources, we exploit the algorithm’s inherent parallelism and
make use of efficient CUDA libraries and the GPU’s hierarchical memory
resources. We furthermore use multi-stream scheduling and multi-GPU
workload deployment strategies to pipeline streaming-detection tasks
with little host-device memory copy overhead. Our flexible design is
able to switch between a high accuracy Cholesky-based detection mode
and a high throughput conjugate gradient (CG)-based detection mode,
and supports various antenna configurations. Our GPU implementation
exceeds 250 Mb/s detection throughput for a 128×16 antenna system.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is believed to
be a key technology for future 5G wireless systems. By equipping
the base station (BS) with hundreds of antennas while serving tens
of users, improved spectral efficiency and link reliability compared
to small-scale MIMO systems can be obtained. Massive MIMO,
however, entails high baseband processing complexity [1]. In particular,
data detection, which demultiplexes the spatial data streams at the
BS, is among the most computationally intensive tasks. Due to the
prohibitive complexity of optimal data detection methods, sub-optimal
low complexity detectors, such as the linear minimum mean square
error (MMSE) data detector, must be used in practice to achieve
sufficiently high throughput at reasonable hardware costs.

To enable high throughput data detection for massive MIMO,
recent FPGA and ASIC results in [2], [3] use a novel low-
complexity Neumann series (NS) data-detection algorithm for the
LTE-A uplink. While corresponding hardware implementations achieve
high throughput, they offer only limited flexibility with respect to
antenna configurations and performance/complexity trade-offs. As
an alternative, general purpose computing on graphics processing
unit (GPGPU) technology is shown to offer both high performance
and high degrees of reconfigurability for accelerating some most
complex baseband algorithms, such as LDPC decoding [4] or turbo
decoding [5]. However, not much is known about the efficacy of
GPGPU for data detection in massive MIMO SDR systems.

In this paper, we present—to the best of our knowledge—the
first GPU implementation of a data detector for massive MIMO
SDR systems. Our detector design supports various BS and user
antenna configurations, and offers performance/complexity trade-offs
by supporting two algorithm modes: an exact Cholesky-based mode
and an approximate conjugate gradient (CG)-based mode. To improve
the processing throughput and reduce the latency of our design, we
judicially perform various GPGPU optimization strategies on kernel
design, memory usage, and task scheduling. By running our design on
two GPU devices concurrently, we achieve over 250 Mb/s throughput
for a 128×16 antenna massive MIMO SDR system.

II. MASSIVE MIMO DETECTION ALGORITHMS

A. OFDM Uplink System Model
We consider a B antenna BS, which serves U ≤ B single antenna

users. In the OFDM uplink, each user encodes the information

This work was supported in part by the US National Science Foundation
under grants CNS-1265332, ECCS-1232274, ECCS-1408370, ECCS-1408006.

bits and maps the encoded bits onto constellation points in a finite
alphabet Ω. The frequency-domain modulated OFDM symbols are
then transformed to the time domain and transmitted over the wireless
channel. At the receive-side, the BS computes frequency domain
signals and then, performs data detection and decoding. We define
yb,k as the received frequency-domain sample of the bth antenna
and the kth subcarrier, and xu,k ∈ Ω as the signal from the uth

user and kth subcarrier. The input-output relation of the channel is
modeled as yk = Hkxk + nk, where yk = [y1,k, . . . , yB,k]T and
xk = [x1,k, . . . , xU,k]T . The channel matrix is Hk ∈ CB×U , and
nk = [n1,k, . . . , nB,k]T is the noise vector, where each entry nb,k is
assumed to be i.i.d. zero-mean complex Gaussian with variance N0.
We set the uplink transmit power for each user to Es and define the
average receive SNR as UEs/N0.

B. Linear Soft-Output MMSE Detection

To achieve low complexity, we focus on the linear MMSE soft-
output detection algorithm described in [6]. In order to compute an
estimate of the transmit signal xk, the MMSE detector first computes
x̂k = Wkyk where Wk = (HH

k Hk + N0
Es

IU)−1HH
k is the MMSE

equalization matrix [7]. Here, HH
k denotes the adjoint of the channel

matrix Hk, and IU is the U × U identity matrix. In order to avoid
redundant computations, we first compute the regularized Gram matrix
Ak = Gk + N0

Es
IU with Gk = HH

k Hk and the matched-filter output
yMF
k = HH

k yk. With this, we can compute the MMSE estimate:
x̂k = A−1

k yMF
k . To compute soft-output information in the form of

log-likelihood ratio (LLR) values, we compute [6]

Lpu,k = ρu,k

(
min
a∈Ω0

p

∣∣∣∣ x̂u,kλu,k
− a
∣∣∣∣2 − min

a′∈Ω1
p

∣∣∣∣ x̂u,kλu,k
− a′

∣∣∣∣2
)
,

where Ω0
p and Ω1

p are the sets of constellation points for which the
pth bit equals to 0 and 1, respectively, λu,k = diag(A−1

k Gk)u is
the effective channel gain (diag(·)u indicates the uth diagonal entry
of a matrix) and ρu,k = λ2

u,k/v
2
u,k is the post-equalization signal-to-

interference-plus-noise ratio (SINR) with v2
u,k = Esλu,k−Es|λu,k|2.

C. Algorithm Complexity Reduction

We next detail methods to reduce the complexity of soft-output
MMSE detection, without noticeably degrading its performance.

1) Equalization: To calculate the MMSE estimate of the transmit
signal x̂k, a direct way would be to first compute yMF

k and A−1
k ,

respectively, where the inverse A−1
k can be computed via the Cholesky

decomposition followed by forward and backward substitution [6]. A
low-complexity alternative to obtain x̂k is to solve the linear equation
Akx̂k = yMF

k for x̂k using iterative algorithms. As shown in [8],
the conjugate gradient (CG) method enables one to solve such linear
systems at low complexity for massive MIMO systems. Lines 7–15
of Algorithm 1 show the CG method that solves for x̂k with inputs
Ak and yMF

k . While CG delivers the exact solution to the system
of linear equations in U iterations, fewer iterations are required in
practice to achieve an accurate estimate.

2) Soft-Output Computation: With a Cholesky-based inversion
approach, we can calculate the LLR values using A−1

k . CG does not
require the inverse A−1

k , but does not provide information on the
effective channel gain λu,k and post-equalization SINR pu,k for LLR

Algorithm 1 Reconfigurable soft-output MMSE MIMO detection

1: Input: Hk and yk /*k is subcarrier index*/
2: Calculate Gk,Ak, y

MF
k /*Preprocessing stage*/

3: if Chol.-based detector then /*Equalization stage*/
4: Chol. decomp. & FW./BW. substitution for A−1

k

5: Calculate x̂k = A−1
k yMF

k
6: else /*CG-based detector*/
7: Init: x(0)

k = 0, r
(0)
k = yMF

k , t
(0)
k = r

(0)
k

8: for i = 1, 2, · · · , I do /*I: CG iter. for a close approx.*/
9: s

(i−1)
k = Akt

(i−1)
k

10: α
(i)
k = ‖r(i−1)

k ‖2/((t(i−1)
k)Hs

(i−1)
k)

11: x
(i)
k = x

(i−1)
k + α

(i)
k t

(i−1)
k

12: r
(i)
k = r

(i−1)
k − α(i)

k s
(i−1)
k

13: β
(i)
k = ‖r(i)k ‖

2/‖r(i−1)
k ‖2

14: t
(i)
k = r

(i)
k + β

(i)
k t

(i−1)
k /*end for*/

15: x̂k = x
(I)
k /*end if-else*/

16: if Chol.-based detector then /*Soft-output comp. stage*/
17: Get λu,k = diag(A−1

k Gk)u and ρu,k , ∀u
18: else /*CG-based detector*/
19: Calculate ρu,k then λu,k , ∀u /*end if-else*/
20: Calculate the LLR values
21: Output: Lp

u,k , ∀p, u

computation. Here, we use a simple yet effective way to approximate
the LLR values without the need of explicitly computing A−1

k .
Our approximation is as follows. Since the diagonal entries of A−1

k

and Gk, ∀k, are all real numbers, λu,k = diag(A−1
k Gk)u, ∀u, k,

is also a real number. We furthermore have ρu,k = λ2
u,k/v

2
u,k =

λu,k

Es−Esλu,k
so that λu,k = Esρu,k/(1 + Esρu,k). To get ρu,k and

λu,k, we first approximate ρu,k by the uth diagonal entry of Gk as
put forward in [8]: ρu,k ≈ Gk(u, u)/N0, which only requires the
diagonal elements of Gk and N0. We then compute the approximation
for λu,k as derived above based on the approximated ρu,k. Finally,
we can compute approximate LLR values. Algorithm 1 summarizes
our algorithm, which offers two modes: exact Cholesky-based MMSE
detection and approximate CG-based detection.

D. Simulation Results

We simulate both the Cholesky-based MMSE detector and CG-
based approximated MMSE detector (CG-D) discussed above in
a massive MIMO 128-subcarrier OFDM system, and compare the
frame error rates (FERs) under different BS and user antenna number
configurations. The information bits are encoded with a 5/6-rate
convolutional code, modulated to 16-QAM, and transmitted through a
channel matrices obtained from the WINNER-Phase-2 model [9]. The
BS is equipped with a linear antenna array at an antenna spacing of
10m/128 ≈ 0.0781m, and incorporated with our soft-output MMSE
detector and a soft-input max-log Viterbi decoder. Figure 1(a)(b)
shows the FER performance at for 16 and 32 user antennas.

III. GPU IMPLEMENTATION

A. Reconfigurable detector architecture overview

We implement our detector on a GPU according to Algorithm 1
with compute unified device architecture (CUDA) [10]. Figure 2
shows the reconfigurable architecture of our unified soft-output MMSE
detector, which includes two modes: an exact Cholesky-based detection
mode and a CG-based approximate detection mode. Both modes have
three major computation stages: (i) a preprocessing stage to compute
the matched filter yMF

k = HH
k yk, the Gram matrix Gk, and the

matrix Ak; (ii) an equalization stage to get the exact or approximated
estimation of transmit signal x̂k using the Cholesky decomposition
or CG; (iii) a soft-output calculation stage to compute LLR values.
In what follows, k ∈ {1, 2, . . . , Nscr}, where Nscr indicates the
number of subcarriers in an OFDM symbol. We define Nsym as
the number of Nscr-subcarrier OFDM symbols. At the input of the

-10 -5 0 5 10 15 20

10-2

10-1

100

SNR [dB]

FE
R

B=128,exact
B=128, CG-D K=1
B=128, CG-D K=2
B=128, CG-D K=3
B=256,exact
B=256, CG-D K=1
B=256, CG-D K=2
B=256, CG-D K=3

(a) 16 users

-10 -5 0 5 10 15 20

10-2

10-1

100

SNR [dB]

FE
R

B=128,exact
B=128, CG-D K=3
B=128, CG-D K=4
B=128, CG-D K=5
B=256,exact
B=256, CG-D K=2
B=256, CG-D K=3
B=256, CG-D K=4

(b) 32 users

Figure 1: Frame error rate (FER) performance comparison at 16QAM
(B:basestation attenna number, K: CG iteration number).

Matched
Filter

Regularized
Gram Matrix

Equalizer

Chol.
Solver

CG
Solver

LLR

Eff.
Chan.
Gain

SINR

ky

kH

0N

MF
ky

kA

kG

ˆkx

-1
kA

,u kλ

,u kλ

,u kρ
,u kρ ,

p
u kL

Preprocessing
Stage

Equalization
Stage

Soft-output
Comp. Stage Chol. mode CG mode

Mode Sel.

Figure 2: Detector architecture and dataflow.

detector, we prepare Nsym sets of received frequency domain signals
{y1, y2, . . . , yNscr} as the payload of a certain streaming frame at
receiver (RX), each yk including B samples corresponding to B
antennas of BS. We also prepare Nsym sets of channel matrices
{H1,H2, . . . ,HNscr} for that frame, as well as the control signals
for mode switching. At the output, our implementation generates LLR
values for every user at a time for a certain streaming frame. To enable
real-time processing, our design is able to dispatch streaming frames
onto multiple streams generated in multiple GPUs for task pipelining,
and process streaming payloads continuously and efficiently. The
following sections discuss the kernel design and task pipelining.

B. Kernel Design and Optimization

1) Preprocessing Stage: We calculate the matrices Gk and Ak,
and the vector yMF

k in a per-subcarrier basis. Since calculating
Gk, Ak, and yMF

k exhibits no data dependency for each subcar-
rier, we fetch NCR = Nsym × Nscr channel matrices Hk and
vectors yk from the GPU’s global memory, and calculate a batch
(batchSize = NCR) of Gk,Ak and yMF

k in parallel for all NCR
subcarriers. With large NCR, we obtain high utilization of the GPU’s
computing resources. The computations of Gk and yMF

k are similar,
i.e., matrix-matrix (vector) multiplication, which can be efficiently
implemented by the cuBLAS [10] library, a GPU accelerated
Basic Linear Algebra Subprograms (BLAS) library. Specifically, we
choose cublasCgemmBatched() function, which is fine tuned for
computing a batch of small complex matrix multiplications in the
format of Ci = AiBi, where i is the matrix index, and A,B,C
are complex matrices or complex vectors. To avoid unnecessary
matrix transpose data movement, and to correctly utilize the cuBLAS
function, we directly store the Hk and yk in column-major format
in GPU global memory as the input of the function. After a batch
of matrices Gk have been computed, we can easily form the matrix
Ak by a light kernel function, which adds a constant N0/Es to each
diagonal entry of Gk matrix in parallel for all NCR subcarriers.

2) Equalization Stage: In this stage, our detector supports a
Cholesky-based inversion, which explicitly calculates A−1

k , as

1,1
Ht 2,1

Ht 3,1
Ht 4,1

Ht 5,1
Ht ,1

H
Ut

1,1s 2,1s 3,1s 4,1s 5,1s ,1Us

2,
H

sht 3,
H

sht 4,
H

sht 5,
H

sht ,
H
U sht

1,shs 2,shs 3,shs 4,shs 5,shs ,U shs

1,
H

sht
,

H
u kt

,u ks

Shared Memory

Atomic Add Atomic Add

1st Subcarrier Nshared
th Subcarrier (sh=Nshared)

1 1
Ht s H

sh sht s

Local
Register

Local
Register

Parallel
Threads

Figure 3: Reduction to shared memory by atomic operations.

well as a CG-based equalizer which approximates the MMSE
estimate x̂k without ever forming A−1

k . For simplicity and ef-
ficiency, we implement the Cholesky-based equalizer by some
special batch-supported cuBLAS functions. In particular, we choose
cublasCgetrfBatched() with pivoting disabled to perform the
Cholesky decomposition of Ak, and cublasCgetriBatched() to
perform the forward and backward substitutions to get A−1

k . Then
we use cublasCgemmBatched() again to calculate estimated x̂k
by x̂k = A−1

k yMF
k . Note that all these functions are still performed

on batchSize = NCR subcarriers in parallel, and the intermediate
results can be shared in pre-allocated GPU global memories.

For the CG-based equalizer, most of the computations are vector
additions or multiplications, except for the calculation of s(i)

k at the be-
ginning of every ith iteration. For s(i)

k , we can calculate batchSize =

NCR number of s(i)
k = Akt

(i)
k first by cublasCgemmBatched() in

parallel. For the following computations as denoted in lines 10–14 of
Algorithm 1, although we can still perform those vector operations by
cuBLAS vector-related functions, we resort to our customized kernel
design CGsolver, where we can take full advantage of the GPU
memory hierarchy within a kernel for potentially better performance,
instead of sharing intermediate results between multiple kernels via
slower global memory as operated by cuBLAS functions.

The functionality of our kernel CGsolver is to update the value of
t
(i)
k , r

(i)
k and the approximate x(i)

k in each iteration, so we need to store
those variables in global memory for data sharing between adjacent
CG iterations. Note that each of those variables is actually a vector
including U elements. For instance, t(i)

k is a vector constructed as
[t

(i)
1,k, t

(i)
2,k, · · · , t

(i)
U,k]T , where the element t(i)u,k corresponds to the uth

user, kth subcarrier and ith CG iteration. Given a certain streaming
frame to process in a certain CG iteration, we launch the kernel with
NCR × U threads, each controlling the processing for each element
in parallel. For efficient computations within the kernel, we first fetch
each element t(i)u,k, r(i)

u,k, x(i)
u,k and also the previously calculated s(i)

u,k

from global memory and store them to local registers in a naturally
coalesced way by each thread. While the vector addition computations
such as x

(i)
k = x

(i−1)
k + α

(i)
k t

(i−1)
k can be performed under a per-

element basis in parallel, the calculation of α(i)
k and β(i)

k is based on
vector dot product results such as (t

(i)
k)Hs

(i)
k or squares of vector

magnitude such as ‖r(i)
k ‖

2, which requires data sharing between
multiple parallel threads. For example, to calculate (t

(i)
k)Hs

(i)
k , we

have to realize the thread communication within every group of U
threads, where the uth thread can see its own local register elements
t
(i)
u,k and s(i)

u,k but not others’ register elements. Here, we use shared
memory, a manually controlled L1 cache-like on-chip memory for
efficient data sharing and thread communication within a thread block.

As stated before, we create a total of NCR × U threads when
launching the kernel, specifically, we have NCR/Nshared thread

H2D D2HDetection H2D D2HDetection

H2D D2HDetection

H2D D2HDetection

H2D D2HDetection

Stream 1

Stream 2

Stream 3

Stream N

Detection Latency

H2D D2HDetection

H2D D2HDetection

H2D D2HDetection

Pipeline bubble
Frame 1

Frame 2

Frame 3

Frame N

Frame N+1

Frame N+2

Frame N+3

Frame 2N

H2D: Host to Device memory copy
D2H: Device to Host memory copy

Figure 4: Multi-stream scheduling on processing streaming frames.

blocks with Nshared×U threads in each block. Here, Nshared denotes
how many sets of shared units we deployed within each thread block,
where each set of shared units handles the communication within a
group of U threads. To calculate a vector dot product or a square
of vector magnitude, we need to add a group of scalar products
together, reducing them to a sum result. Such operations can be
efficiently realized by atomic addition, which adds the results from
different threads to a shared location, such as shared memory or
global memory, in serial with implicit synchronization locks between
threads. On the latest Nvidia GPU with Maxwell architecture, atomic
operations have been further enhanced for shared memory [10]. We
take advantage of this new feature and perform atomicAdd operations
on the elements within every group of U threads for the reduction to
a set of shared units which can be seen and used by those U threads.
A total of Nshared sets of such shared units are deployed for handling
Nshared × U threads in each thread block. We finally have Nshared
sets of α(i)

k and β
(i)
k results stored in the shared memory of each

block, so that they can be efficiently fetched as shared coefficients
during the vector addition computations such as lines 11,12,14 in
Algorithm 1. Figure 3 shows an example of the reduction process
by serialized atomic operations on certain shared memories within a
thread block when calculating (t

(i)
k)Hs

(i)
k . The CG iteration index i

is omitted for convenience in the figure.
3) Soft-Output Computation Stage: We calculate the LLR values

in this stage. The kernel is launched with a total of NCR×U threads
to process each I/Q sample of each subcarrier for each user in parallel.
In the kernel, we can either calculate λu,k then ρu,k for LLRs of the
Cholesky-based detector, or calculate ρu,k then λu,k without explicitly
forming A−1

k for the CG-based detector, depending on the detector
mode. The minimum operations are performed on multiple bits
corresponding to a certain modulated I/Q sample. Since our kernel is
launched under a per-sample basis, each thread will calculate all the
LLR values of those bits corresponding to a certain I/Q sample, with
those min values reduced to a local register variable of that thread
instead of any shared memory.

C. Multi-Stream Scheduling

We have discussed how to design and optimize various computation
kernels for their efficient execution, but usually the CPU-GPU memory
copy of input or output data will introduce significant overhead,
especially when we have a large data set to transfer between CPU and
GPU. Here, we perform multi-stream scheduling in our design for
the task pipelining of CPU-GPU memory copy and kernel execution,
so that the processing tasks of streaming frames can be dispatched
onto multiple streams and handled concurrently.

Consider that we have Nframe number of streaming frames received
continuously in a real-time uplink receiver, for a certain frame, the
payload data has Nsym frequency domain OFDM symbols, each
including Nscr subcarrier signals {y1, y2, . . . , yNscr}. As the input
of our detector, those payload data as well as pre-calculated channel
matrices will be initially stored in page-locked host memory for
faster CPU to GPU asynchronous memory copy. Note here to avoid
redundant host-device memory copy for a certain frame, while we

Table I: Single Stream Throughput Performance
128× 16 (in Mb/s) 256× 32 (in Mb/s)

Nsym
Chol CG@3iter

Nsym
Chol CG@4iter

K/(K+M) K/(K+M) K/(K+M) K/(K+M)
8 88.92/61.80 106.74/71.58 2 36.98/16.96 39.10/20.31

16 106.56/78.39 127.87/88.86 4 43.63/24.98 49.16/28.97
32 118.19/90.74 144.51/102.65 8 52.14/34.02 57.76/39.37
64 130.45/102.51 155.02/113.93 16 54.15/40.82 58.09/45.78

K: pure Kernel execution throughput
K+M: throughput under (Kernel execution + Memory copy overhead)

need to copy all the Nsym OFDM payload symbols from host, we
only need to copy Nscr channel matrices {H1,H2, . . . ,HNscr} of
a certain OFDM symbol from the host. We then broadcast those
channel matrices to all OFDM symbols of the frame within GPU
global memory by Device To Device Memcpy with higher memory
bandwidth than PCIe bus, assuming the channel information is static
across different OFDM symbols in a frame. When we schedule the
processing tasks of streaming Nframe RX frames onto Nstream
streams, the task of f th frame will be dispatched to the (f mod
Nstream)th stream, with the Hyper-Q feature enabled in the current
Maxwell architecture GPU to avoid false dependencies between
multiple streams [10]. After detection, the LLR values for a frame
will be asynchronously transferred from GPU global memory to pre-
allocated page-locked host memory in corresponding streams. Figure 4
shows the multi-stream scheduling on processing tasks of streaming
frames for overlapping the CPU-GPU memory copy latency. An ideal
pipeline requires two memory copy engines (H2D and D2H) and the
kernel execution engine to keep working without any waiting or idle
time slots (pipeline bubbles). While such a condition is hard to match
exactly in most cases, we select a proper Nstream experimentally to
reduce pipeline bubbles for near-optimal pipeline performance.

D. Multi-GPU workload deployment

When the frames are generated faster than a single GPU can
handle, they may stall at the host memory waiting for deployment. To
support multi-GPU extension in our detector design, we create NGPU
threads in the CPU by OpenMP APIs, each controlling the workload
processing in a certain GPU in our multi-GPU system, so that the
detection tasks can be deployed evenly and performed concurrently
on multiple GPUs, further improving the detection throughput.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experimental platform includes an Intel i7-3930K six-core
3.2GHz CPU and two 1GHz Nvidia GTX 980Ti graphics cards. The
GTX 980Ti has 6GB GDDR5 device memory and a Maxwell GPU
with 2816 CUDA cores. The CPU and graphic cards communicate
via PCIe x16 interfaces. We use CUDA Toolkit 7.0 running on Linux
64-bit OS for the design implementation, debugging and performance
profiling. The experimental results are based on an Nsight release
version of the design with O3 compiler optimization.

In Table I, we record the throughput performance at different
configurations of BS antenna numbers (B) and user antenna numbers
(U), as well as different detection modes, i.e., Cholesky-based mode
or CG-based mode, when scheduling the detection workload in a
single stream and a single GPU. 16-QAM modulation is used. Nsym
indicates the number of OFDM symbols in a frame, and each OFDM
symbol includes Nscr=128 subcarriers. With the increase of Nsym
and the total number of subcarriers NCR = Nsym × Nscr , the
throughput will also increase due to higher utilization rate of GPU
computing resources with more workloads fed. We compare the pure
kernel execution throughput and the effective throughput including
the host-device memory copy overhead at different Nsym. The results
show that the memory copy overhead will introduce around 20%-30%
throughput performance loss for 128(B) × 16(U) MIMO systems,

Table II: Multi-stream & Multi-GPU Enhanced Performance
NGPU Nstream Nsym Detector mode T (Mb/s) L (ms)

1 8 8 128× 16 Chol. 131.62 3.98
128× 16 CG@3iter 148.67 3.54

2 4 16 128× 16 Chol 265.94 3.94
128× 16 CG@3iter 286.57 3.66

T: Throughput on processing streaming frames (including memory copy overhead)
L: Detection latency for each frame

and higher performance loss for 256(B)×32(U) MIMO systems. We
also show that the CG-based detector with a proper iteration number,
e.g., minimum iteration for <1dB SNR loss at 10−2 FER compared
to Cholesky-based detector, achieves better throughput at different
configurations of antenna numbers and detection workloads, so that
one can trade-off error performance with throughput by reconfiguring
the detection mode of our design.

In Table II, we show the enhanced results by performing multi-
stream and multi-GPU deployment. The detection tasks of streaming
frames are evenly deployed on NGPU GPUs, each GPU generating
Nstream streams with each stream processing Nsym OFDM symbols
for a certain frame. By setting a typical upper bound on detection
latency (several milliseconds) for a real-time system, for example,
4ms in our experiments, we record a proper combination of Nstream
and Nsym for a near optimal task pipelining with few pipeline stalls
to achieve high throughput. With multiple streams, we overlap almost
all the memory copy overhead for a higher throughput which is close
to the pure kernel execution throughput in Table I. By using two
GPUs, the total throughput can be enhanced by around two times,
and our CG-based detector achieves 286.57 Mb/s throughput with
3.66 ms latency for supporting a 128(B)× 16(U) MIMO system at
16-QAM. We can further extend our design to run on more GPUs
in the future for even higher throughput, for example, by using four
Nvidia 980Ti GPUs concurrently, our design is likely to achieve over
0.5 Gb/s throughput for a 128× 16 MIMO system at 16-QAM.

V. CONCLUSION

We have designed a GPU-based uplink detector targeting real-
time massive MIMO SDR systems. Our MMSE soft-output detector
supports various antenna configurations and performance/complexity
trade-offs by supporting two detection modes. Our design achieves over
250 Mb/s throughput with less than 4 ms latency by using two of the
latest GPUs for supporting a 128× 16 antenna system, demonstrating
the efficacy of GPU-accelerated massive MIMO SDR systems.

REFERENCES

[1] F. Rusek and et al., “Scaling up MIMO: Opportunities and challenges
with very large arrays,” IEEE SPM, pp. 40–60, Jan 2013.

[2] M. Wu and et al., “Large-scale MIMO detection for 3GPP LTE:
Algorithms and FPGA implementations,” IEEE J-STSP, pp. 916–929,
Oct 2014.

[3] B. Yin and et al., “A 3.8Gb/s large-scale MIMO detector for 3GPP
LTE-advanced,” in ICASSP, May 2014, pp. 3879–3883.

[4] G. Wang and et al., “High throughput low latency LDPC decoding on
GPU for SDR systems,” in GlobalSIP, Dec 2013, pp. 1258–1261.

[5] M. Wu and et al., “Implementation of a 3GPP LTE turbo decoder
accelerator on GPU,” in SIPS, Oct 2010, pp. 192–197.

[6] C. Studer and et al., “ASIC implementation of soft-input soft-output
MIMO detection using MMSE parallel interference cancellation,” IEEE
JSSC, pp. 1754–1765, July 2011.

[7] A. Paulraj and et al., “Introduction to space-time wireless communica-
tions,” in New York, USA: Cambridge University Press, 2008.

[8] B. Yin and et al., “Conjugate gradient-based soft-output detection and
precoding in massive MIMO systems,” in GLOBECOM, Dec 2014, pp.
3696–3701.

[9] WINNER Phase II Model. [Online]. Available: http://www.ist-
winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf

[10] Nvidia CUDA programming guide. [Online]. Available:
http://docs.nvidia.com/cuda/

