
A High Performance GPU-based Software-defined Basestation
Kaipeng Li, Michael Wu, Guohui Wang, Joseph R. Cavallaro

Department of Electrical and Computer Engineering
Rice University, Houston, Texas 77005

Email: {kl33, mbw2, wgh, cavallar}@rice.edu

Abstract—We present a high performance GPU-based software-defined
basestation. The key idea is to explore the feasibility of using GPU
as a baseband processor for supporting software-defined basestation
to achieve both real-time high performance and high reconfigurability,
considering the numerous computing resources and flexible programming
interface of GPU. Based on an existing WARPLab SDR framework, we
put effort on the exploration of the data level parallelism and algorithm
level parallelism of baseband kernels for GPU acceleration, as well as
the task level parallelism in the system for the task pipelining of packet
data transfer and data processing. As a case study, an OFDM system is
implemented to better demonstrate the concept of our system architecture
and optimization strategies. In this case, our GPU-based basestation can
not only achieve less than 3ms latency and more than 50Mbps throughput
for processing streaming frames in real-time, but also offer software-
defined flexibility and scalability for supporting future wireless standards.

Index Terms—GPU, Software-defined Radio, High performance, Re-
configurability, Basestation

I. INTRODUCTION

Software-defined radio (SDR) system is a communication sys-
tem that implements baseband processing modules in a fully pro-
grammable way instead of designing hardware circuits of fixed func-
tionality. The programmability and reconfigurability of SDR show
high potential for supporting current and next generation wireless
communication standards.

Field programmable gate arrays (FPGAs) and general purpose pro-
cessors (GPPs) like CPU are often used for accelerating the baseband
processing algorithms in a SDR. FPGA-based SDR systems, such as
802.11 reference design on wireless open-access research platform
(WARP), usually have high performance satisfying real-time demand,
but suffer from low programming accessibility and flexibility and
high development cost. GPP-based SDR systems, such as GNU radio
[1], Microsoft Sora platform [2] and WARPLab [3], offer higher
programming capability based on high-level programming language
such as C or Matlab for rapid prototyping and developing of PHY
layer algorithms, but may meet some performance bottleneck when
dealing with computationally-intensive baseband algorithms such as
channel decoding.

Recently, general purpose computing on graphics processing unit
(GPGPU) leads a new trend in the high performance computing area
[4]. The parallel architecture and numerous computational resources
on graphics processing unit (GPU) are beneficial for the efficient
processing of high workload digital signal, at the same time, we can
use an easy-to-use programming interface, such as Open Comput-
ing Language (OpenCL) and Compute Unified Device Architecture
(CUDA), for convenient development of specific applications. As
an alternative to a of baseband processor, GPU has the potential to
combine the high performance of FPGA and high flexibility of GPP
for supporting a real-time SDR system. The feasibility of accelerating
baseband algorithms using GPU was explored in some previous work,

This work was supported in part by the US National Science Foundation
under grants ECCS-1408370, CNS-1265332, and ECCS-1232274.

FPGA-based
Radio Control

Matlab-based
Baseband

ProcessingC-MEX
Packet 

transfer
bus CPUFPGA

WARP PC

Figure 1. WARPLab transceiver model

such as GPU-based Turbo decoder [5] and LDPC decoder [6], which
can achieve quite high performance as expected. Also, there are some
recent work on the implementation of GPU-based SDR for mobile
WiMAX standard [7] or LTE standard [8], but the performance of
those systems is not quite satisfactory for real-time applications.
This motivates us to further optimize the utilization of GPU for
supporting a software-defined basestation with both high performance
and flexibility.

In this paper, we propose to build a software-defined basestation
using Nvidia GPU and a modified WARPLab [3] framework. For
simplicity but without losing generality, we will show a case study
on the implementation of a single input single output (SISO) OFDM
WiFi uplink system. Considering the reconfigurability and scalability
of our framework and system, it would not be difficult to modify and
extend our design for supporting future wireless standards.

This paper is organized as follows. In Section II, we briefly
overview the WARPLab framework and the design flow of our
proposed basestation. In Section III, we show the design and imple-
mentation details of our basestation, focusing on the explanation of
how we use GPU for accelerating each baseband kernel. We evaluate
the performance of our basestation in Section IV and conclude our
work in Section V.

II. SYSTEM OVERVIEW

A. Overview of WARPLab

WARPLab is a flexible SDR platform for rapid prototyping of PHY
layer baseband algorithms. We can use a PC and WARP version3
nodes to set up the experimental platform. The PC and WARP
are connected and communicate via Ethernet cable to complete a
transceiver, and the transmitter (TX) and receiver (RX) can commu-
nicate through the wireless channel. The basic transceiver model of
the latest WARPLab 7.4 version is shown in Figure 1.

As shown in Figure 1, the WARPLab framework includes three
major design components: a Matlab-based design running on the
CPU within the PC for baseband processing and transceiver parameter
configuration; a FPGA-based design for radio control and interface
running on the Xilinx Virtex-6 FPGA integrated in WARP version3
node; a C-MEX based design for the user datagram protocol (UDP)
packet transfer and buffer between PC and WARP in the private
Ethernet network. At the TX side, the PC will transform the original
data into I/Q samples in baseband, wrap the samples and some



GPU-based software-defined basestation

FPGA-based
Radio Control

Matlab-based
Baseband

ProcessingC-MEX
Packet 

transfer
bus CPUFPGA

WARP PC

WARPLab framework

Acceleration AccelerationKeep

FPGA-based
Radio Control

FPGA
WARP GPU-Server

C-based 
Environment

CUDA
Baseband

CPU

GPU

C-based
Packet 

transfer
bus

Figure 2. Design flow and proposed system architecture

transceiver configuration information (such as RF gain, etc) into UDP
packets and send to the TX WARP node. The WARP will extract
the samples and configuration information from the packets, execute
the configuration, pass the I/Q samples through the DAC, upconvert
them to radio frequency (2.4GHz/5GHz) and transmit them over
the air. The RX WARP node will capture the signal from the air,
complete downconversion, ADC, and send the I/Q samples to the PC
for baseband processing and recovery of the original data. For more
implementation details of the original WARPLab, please refer to [3].

B. High level architecture of GPU accelerated basestation

We use the WARPLab framework as a starting point of our
proposed GPU-based SDR system and overcome its several limits
to satisfy the real-time demand of a practical SDR system. First, the
Matlab-based baseband processing running on CPU is too slow for
real-time performance. To overcome this limit, we implement a GPU-
based software-defined solution using CUDA [9], a C-based interface
for programming the GPU, to accelerate the baseband kernels and
meet the high throughput and low latency demand of a real-time
SDR. Second, the execution of the C-MEX packet transfer function
from Matlab will introduce high overhead, reducing the Ethernet
throughput between PC and WARP, and finally the throughput of the
whole system. To overcome this limit, we modify the packet transfer
module totally in native C language to remove the unnecessary
overhead in the packet transfer and baseband processing by enabling
a more efficient data sharing interface. The design flow and high level
architecture of our GPU accelerated basestation are shown in Figure
2.

In the following sections, we will illustrate the design and im-
plementation details of a SISO OFDM system for a WiFi uplink
as a case study. In this case, we use our GPU-based software-
defined basestation as a receiver basestation considering the baseband
processing algorithms are more complex at RX. We implement the
OFDM baseband signal processing for TX in C language running on
CPU since the C-based implementation can meet the performance
requirements for the TX.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. Experimental platform setup and baseband prototype

Our GPU-based RX baseband design is deployed on a GPU
server, which includes an Intel i7-3930K six-core 3.2GHz CPU and
four NVIDIA GTX TITAN graphic cards. Each TITAN contains a
837MHz 2688 core Kepler GPU and 6GB GDDR5 memory. Nsight
Eclipse edition 6.0 and CUDA 6.0 tookit are used to design, debug,

Frame 
Synchronization

CFO
Correction FFT Equalization

Phase Error
Estimation

Channel
Estimation

16QAM
Demod

Turbo
Decoding

Data 
out

I/Q 
inWARP

RX Baseband

IFFTPreamble
Insertion

Pilot
Insertion

16 QAM
Mod

Turbo
encodingWARP I/Q 

out
Data 

in

TX Baseband

Wireless
Channel Transmitter

Receiver

Figure 3. OFDM baseband prototype in the case study

profile and compile the codes on a Linux 64-bit operating system. We
use the fftw and cuFFT library for the FFT/IFFT computation on CPU
and GPU respectively. The FPGA design configuration is borrowed
from the latest WARPLab version 7.4 for WARP version3 board. The
PC and WARP v3 board are connected via 1Gbps Ethernet. Figure
3 shows the baseband prototype of our OFDM system for the case
study.

B. GPU accelerated baseband processing

In the case study, we implement a GPU-based software-defined
solution of a whole RX baseband chain for WiFi standard on our
basestation. For convenience, here we list the definitions of some
parameters which will be used to describe the parallelism of kernels.

Nsamp: The number of samples in a TX or RX frame. It can be
configured in WARPLab by "txlength" and "rxlength", indicating the
transmitted or received frame length in each transmission cycle. The
transmission and processing of each frame will be kept in a loop
for data streaming. The maximum frame length is 32768, which is
limited by the buffer capacity on WARP.

Nsym: The number of OFDM symbols in each frame.
Nsub: The number of subcarriers, excluding cyclic prefix, in each

OFDM symbol.
Ndata: The number of subcarriers with payload data, excluding

cyclic prefix, pilot and zero subcarriers, in each OFDM symbol.
Ncode: The number of codewords in each frame for Turbo encod-

ing/decoding.
1) Frame synchronization: Frame synchronization is used to detect

the start of the frame and then extract the whole frame for the
following processing. In this case study, we add two 64-sample long
training sequence (LTS) as the preamble of the frame at TX. At
RX, we use another training sequence to calculate the correlation
with received frames. The detected correlation peaks with a 64-
sample interval indicate a start of the data payload in a frame. In
frame synchronization, the most computationally-intensive part is the
convolution of training sequence and received frame when calculating
the correlation. Usually, we can use FFT and IFFT to implement
fast convolution by calculating circular convolution. In our case,
the length of LTS len_lts is significantly shorter than the length
of a frame Nsamp. To perform direct FFT and IFFT based circular
convolution, we need to extend the length of both the LTS and frame
to {len_lts+Nsamp-1} by padding zeros, especially more zeros for
shorter LTS, which will introduce extra computation overhead. Here,
we use the overlap-add method [10] to calculate the convolution of
the training sequence and received frame more efficiently. In this
method, the long digital signal will be divided into several short
segments, and each short segment will do convolution with the
short signal respectively to get a batch of short convolution results,
and the final convolution of the long signal and short signal is the



Each thread controls FFT & equalization 
of each OFDM symbol

Number of threads

Number of streaming frames

Nsym

Nsub

Figure 4. GPU processing model for FFT and equalization workload

overlap-add sum of the short convolution results. When computing
the short convolutions, we can use the FFT and IFFT to reduce the
computational complexity.

To implement the synchronization kernel on GPU, we divide each
received frame into 64-sample short segments, so the total amount
of segments is Nsamp/64. For each segment, we calculate its convo-
lution with the training signal by using FFT and IFFT, which can be
easily implemented on GPU using the cuFFT library. According to
the overlap-add method, we can get the final convolution result by
calculating a batch of small length FFT and IFFT on GPU in parallel,
and the batch number is the amount of small segments in a frame
Nsamp/64, which indicates the parallelism in this synchronization
kernel. The convolution results of training sequence and received
frames are then used to detect the correlation peaks to find the start
of each frame and extract the I/Q samples for following processing.

2) Carrier frequency offset (CFO) correction: Carrier frequency
offset (CFO) will result in a spin of the received constellation. We
can estimate the CFO by calculating the phase difference of identical
samples in the two LTS and averaging the 64 phase differences. The
CFO result is stored in the register on GPU for fast fetching when we
apply it on the received I/Q samples for offset recovery. Considering
that there is no data dependency between each I/Q sample when
applying CFO recovery, we generate Nsamp threads in the GPU for
recovering the CFO of each I/Q sample in parallel in this kernel.

3) FFT and Equalization: After correcting CFO, we remove the
cyclic prefix and push the time domain samples into the FFT to
generate frequency domain samples. For equalization, we need to use
the results of channel estimation and phase error estimation. Channel
information can be estimated by averaging the estimates from the
two LTS, and phase error can be calculated by the phase difference
of inserted pilot tones in each OFDM symbol. We store the channel
estimation and phase error estimation results in the GPU register in
the equalization kernel for efficiently correcting the amplitude and
phase error resulting from propagation in the wireless channel. Then,
a zero-forcing equalizer is used for simplicity.

In each frame, we have Nsym OFDM symbols, each symbol con-
tains Nsub subcarriers and has no data dependency when performing
FFT and the following equalization. For the FFT part, we have
Nsym batches of Nsub point FFT calculated by cuFFT in parallel,
and then the frequency domain samples are pushed into the Nsym

threaded kernel for equalization, in which each thread controls the
processing of Nsub samples in each OFDM symbol synchronously.
Assuming there are several streaming frames to be processed, the
GPU processing model for FFT and equalization workload can be
described in Figure 4.

Codeword 0 to 15, Sub-block 0

Codeword 16 to 31, Sub-block 0

Codeword N-16 to N-1, Sub-block 0

Codeword 0, Sub-block 0

Codeword 1, Sub-block 0

Codeword 15, Sub-block 0

128 threads

Figure 5. GPU processing model for Turbo decoder

Table I
PARALLELISM DEGREE OF RX KERNELS

Kernel Parallelism degree
Frame synchronization Nsamp/64

CFO correction Nsamp

FFT+equalization Nsym

Demodulation Ndata×Nsym

Decoding 128×P×Ncode/16

4) Demodulation: After equalization, we extract our payload
samples, excluding pilots and zero carriers, for demodulation. We use
a 16QAM hard-decision demodulator in our case study for the trade-
off between data rate and bit error rate performance. Considering the
reconfigurability of our design, we can also replace it with a QPSK
or 64QAM demodulator when needed. In the demodulation kernel,
we generate Ndata×Nsym threads for mapping each I/Q payload
sample in a frame to corresponding code bits in parallel since each
I/Q sample is independent from others when demodulating.

5) Decoder: To improve the error correction performance, we in-
tegrated a GPU-based Turbo decoder developed in our previous work
[5] into our current software-defined basestation. At the transmitter
side, we have a rate 1/3 encoder developed in C.

Consider that we have Ncode codewords to decode in a frame,
we first divide each codeword into P sub-blocks, then group sub-
blocks of 16 codewords into a processing unit. For each unit,
we generate 128 threads for parallel decoding, so we have totally
128×P×Ncode/16 threads to deal with all the decoding workload in
a frame, as shown in Figure 5. Besides, shared memory and registers
are wisely used in kernels to store frequently used parameters
for efficient log-likelihood ratio computation. More implementation
details can be found in reference [5].

6) Optimization strategies for GPU implementation: As we dis-
cussed above, we develop a GPU-based software-defined solution for
the entire WiFi RX baseband. In this design process, we carefully
explore the parallelism of each kernel and optimize the hierarchical
memory usage on GPU for better utilization of GPU computing
resources and system performance.

For parallelism exploration, we analyze the data level parallelism
and algorithm level parallelism of each baseband kernel function
and deploy corresponding GPU threads for parallel processing. The
parallelism degree of each kernel can be measured by the number of
generated threads on GPU when executing a kernel, which are listed
in Table I.

For memory access optimization, we judicially utilize the hierar-
chical memory on GPU to reduce the memory access latency. Con-
sidering the large overhead of memory copy between host memory
and GPU device memory, we only copy the received raw frame data
to GPU at the beginning of the baseband chain and copy the decoded
results back to CPU at the end of the baseband, to avoid the data



Packet transfer task
Baseband processing task

1st frame 2nd frame nth frame

Multi-threaded
control on

CPU (OpenMP)
Buffer

Thread1

Thread2

Task pipelining

1st 2nd nth

1st 2nd 3rd nth

1st frame 2nd frame

Latency

Packet transfer 
acceleration

GPU-based
baseband 

acceleration

Figure 6. RX optimization flow

copy overhead. Device global memory is used for sharing the results
and information between different kernel functions. When the kernels
need to fetch data from device memory for processing, most of the
kernels are designed to access the device memory in a coalesced way,
that is, the parallel threads will be grouped into 32-thread wraps to
access a batch of memory with contiguous addresses for reducing the
device memory access overhead. For frequently used parameters and
data in some kernels, such as equalization and Turbo decoding kernel,
the shared memory and registers are used to achieve fast reading and
writing of temporary data inside a kernel. For example, the channel
estimation and phase error estimation results will be passed into the
equalization kernel from device memory and stored in local registers
for efficient access in that kernel. We should also note that the shared
memory and register resources are quite limited in a GPU, such as
several tens of KB in a thread block, so they should be carefully used
and organized to avoid the performance bottleneck introduced by the
resource access competition between different threads.

C. Packet transfer bus acceleration

The efficiency of packet transfer bus between PC and WARP
node is also a determining factor of the Ethernet throughput and
the performance of the whole system. The C-MEX based UDP
transport design and Matlab environment in the original WARPLab
will introduce high initialization and interface overhead. To avoid
such overhead, we use native C language to redesign the transfer
bus, from parameter initialization to the core write buffer and read
buffer functions. In this C-based environment, the packet transfer bus
and baseband processing task can share data and communicate more
efficiently with a smoother interface.

D. Further optimization

The C-based environment also offers us the convenience of using
a compatible API, such as OpenMP, for concurrent execution of
packet transfer and baseband processing to realize the task level
parallelism. Considering the data dependency between packet transfer
and baseband processing, we use a "producer-consumer" model to
pipeline these two tasks. For example, at the receiver side, the stream-
ing frames are transferred from WARP node to PC, "producing"
the data to be processed, and the baseband processing chain will
"consume" the data once the data is ready. A buffer is allocated
on the host as the communication interface between the Ethernet
packet transfer task and baseband processing task, and two threads
generated by OpenMP interface will control each task respectively
for the task pipelining. In this way, we can overlap the packet transfer
latency and baseband processing latency for lower cycle latency on
processing each streaming frame and higher system throughput. The
RX optimization flow is shown in Figure 6 as an example.

Table II
PARAMETER CONFIGURATION.

Kernel Configuration in each frame

Sync, CFO Nsamp = 32768 (16 cyclic prefix per OFDM symbol,
2 LTS preambles, payload data, padded zeros)

FFT, IFFT, Nsym = 384 OFDM symbols, 64-point FFT/IFFT
equalization Nsub = 64 (48 data subcarriers, 4 pilots, 12 zero subcarriers)
Mod/Demod 16 QAM, Ndata = 48, Nmod_samp = Ndata × Nsym

Turbo enc/dec 1/3 rate, 4608 bits codeword, Ncode = 16, P = 64, 6 max iters

0.5 1 1.5 2 2.5 3
x 10

4

0

100

200

300

400

500

600

Frame length at TX

E
th

er
ne

t t
hr

ou
gh

pu
t (

M
bp

s)

0.5 1 1.5 2 2.5 3
x 10

4

0

100

200

300

400

500

600

Frame length at RX

E
th

er
ne

t t
hr

ou
gh

pu
t (

M
bp

s)

Figure 7. Packet transfer improvement results

IV. SYSTEM EVALUATION

A. Parameter configuration for the case study

We benchmark the timing, throughput and BER performance using
our experimental setup stated earlier. Most of the computation is done
in floating point on both CPU and GPU. The parameter configuration
of our OFDM system for case study is listed in Table II.

B. Packet transfer improvement results

We benchmark the raw Ethernet throughput of packet transfer
without adding baseband processing at both TX and RX, and compare
the results of the original Matlab-based packet transfer design and our
modified C-based packet transfer design at different frame length per
cycle. Figure 7 shows the benchmark results.

From the results, we can find that our C-based packet transfer
design achieves evident Ethernet throughput improvement. Also, with
the configuration of longer frame length per cycle, the Ethernet
throughput tends to be higher. That is because the frame will be
divided into several UDP packets when transferring between PC and
WARP node, and the frame length is usually not exactly divisible
by the packet length, so a fragment packet will be generated at the
tail of each frame. In general, compared to longer frame, a smaller
frame will generate more fragment packets given a certain transmis-
sion workload, which will result in lower Ethernet throughput. The
maximum value of frame length in a transmission cycle is 32768
samples in WARPLab, and around 500Mbps Ethernet throughput of
packet transfer can be achieved at that frame length with our modified
design while excluding the baseband processing of the packets.

C. Timing performance of system

We implement the TX baseband in C without GPU acceleration
for simplicity considering its low processing complexity, while at the
RX side, we have a GPU accelerated RX baseband in CUDA and
also a serial C implementation for timing performance comparison.
Table III shows the kernel runtime comparison results at RX baseband
on processing one frame (32768 samples). The runtime is measured
by wall-clock time difference between the start and end of a kernel
execution based on the release version compiled by Nsight Eclipse.

From the comparison result, we can find our GPU implementation
achieves obvious speedup on each baseband kernel, and usually, the



Table III
TIMING PERFORMANCE COMPARISON

Kernel C CUDA Parallelism Speedup
Synchronization 5.915ms 0.473ms 512 12.51×

CFO 1.327ms 0.036ms 32768 36.86×
FFT+equalization 2.547ms 0.693ms 384 3.68×

Demodulation 0.081ms 0.006ms 18432 13.50×
Turbo decoding 8.160ms 0.756ms 8192 10.79×

Table IV
LATENCY OF TX AND RX

TX RX
Packet transfer Baseband processing Packet transfer Baseband processing

(C) (C) (C) (CUDA)
1.326 ms 0.461 ms 2.185 ms 2.598 ms

kernel with higher parallelism achieves even better acceleration since
there is greater GPU streaming processor utilization.

We also benchmark the entire baseband latency and packet transfer
latency of both TX and RX, which is shown in Table IV. Note that
the baseband processing latency includes both kernel runtime and
memory copy and access overhead. The latency is measured by the
difference of the wall-clock time at the start and end of a task.

By the task pipelining of the packet transfer and baseband pro-
cessing using multithreaded control on CPU, we can totally overlap
TX baseband latency by packet transfer latency, and overlap most
of baseband processing latency at RX side, to further accelerate our
system as stated before. We should note that our GPU-accelerated
RX baseband evidently reduces the baseband processing latency to
make it close to packet transfer latency, which contributes to the
better overlap and task pipelining of packet transfer and baseband.
By above optimization, our GPU-based software-defined basestation
can achieve less than 3ms latency on processing a streaming frame
in real time.

D. Throughput performance of system

The benchmark results of Ethernet data rate over the PC-WARP
link (Ethernet throughput) and the original data resources trans-
mission rate (over-the-air throughput) is shown in Table V. "Not
pipelined" means the packet transfer task and baseband processing
task proceed in serial, and "Pipelined" means packet transfer task
and baseband processing task execute concurrently under "producer-
consumer" model. In this benchmark, we use GPU-accelerated RX
baseband.

By the task pipelining, the TX throughput does not improve
too much, since the TX baseband is already quite fast, which
will not provide significant latency overlap. At the RX side, the
pipelined design achieves an 82.3% throughput improvement, which
proves the efficient latency overlap between packet transfer and RX
baseband processing. After all of the above acceleration, our GPU-
based software-defined basestation can achieve more than 50Mbps
throughput for a WiFi uplink.

E. Bit error rate performance

We benchmark the bit error rate (BER) performance of our system
in an indoor channel based on over-the-air experiments, and plot BER
against the RF gain of TX, which is proportional to SNR. The BER
performance of our system with 16QAM modulation is shown in
Figure 8.

V. CONCLUSION

In this paper, we present a high performance GPU-based software-
defined basestation. As a case study of GPU accelerated baseband

Table V
THROUGHPUT PERFORMANCE

TX RX
Not pipelined Pipelined Not Pipelined Pipelined

Ethernet 377.3Mbps 409.4Mbps 220.5Mbps 402.7Mbpsthroughput
Over-the-air 42.7Mbps 51.2Mbps 27.6Mbps 50.3Mbpsthroughput

0 2 4 6 8 10
10-4

10-3

10-2

10-1

B
E

R

TX RF Gain (dB)

Figure 8. BER performance

processing, we explore the data level and algorithm level parallelism
of baseband kernels and efficiently utilize the hierarchical memory
resources on GPU to implement a high performance OFDM RX
baseband. The task level parallelism is further studied for the task
pipelining of packet transfer and baseband processing to achieve
higher system performance. Benchmark results show that our GPU
accelerated basestation can achieve less than 3ms processing latency
on streaming frames and more than 50Mbps over-the-air throughput
for a WiFi uplink configuration. The software-defined high flexibility
and scalability of our basestaion also have the potential for supporting
future wireless standards.

REFERENCES

[1] GNU Radio. [Online]. Available: http://gnuradio.org
[2] Sora. [Online]. Available: http://research.microsoft.com/en-us/projects/

sora
[3] WARPLab. [Online]. Available: http://warpproject.org/trac/wiki/

WARPLab
[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[5] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “Implementation of a high
throughput 3GPP turbo decoder on GPU,” Journal of Signal Processing
Systems, vol. 65, no. 2, pp. 171–183, 2011.

[6] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low
latency LDPC decoding on GPU for SDR systems,” in IEEE Global
Conference on Signal and Information Processing, 2013, pp. 1–4.

[7] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR system using
graphics processing unit,” Communications Magazine, IEEE, vol. 48,
no. 3, pp. 156–162, 2010.

[8] S. Bang, C. Ahn, Y. Jin, S. Choi, J. Glossner, and S. Ahn, “Implementa-
tion of LTE system on an SDR platform using CUDA and UHD,” Analog
Integr. Circuits Signal Process., vol. 78, no. 3, pp. 599–610, Mar. 2014.

[9] CUDA. [Online]. Available: https://developer.nvidia.com/cuda-toolkit
[10] L. R. Rabiner and B. Gold, Theory and application of digital signal

processing, 1975.


