Mobile GPU Accelerated Digital Predistortion on a
Software-defined Mobile Transmitter

Kaipeng Li*, Amanullah Ghazi', Jani Boutellier!

Mahmoud Abdelaziz}, Lauri Anttila¥,

Markku JunttiT, Mikko Valkamaf, Joseph R. Cavallaro*
*Rice University, Dept. Electrical and Computer Engineering, Houston, TX, USA
University of Oulu, Dept. Computer Science and Engineering, Finland
iTampere University of Technology, Dept. Electronics and Communications Engineering, Finland

Abstract—We present the design exploration and the performance
evaluation of a mobile transmitter digital predistortion (DPD) module
on a mobile GPU. Digital predistortion is a widely used technique for
suppressing the spurious spectrum emission caused by the imperfection
of power amplifier and radio frequency (RF) circuits in a real wireless
transmitter. Considering the parallel architecture, numerous computing
cores and programmability of GPU, in this work, a DPD design based on
augmented parallel Hammerstein structure is implemented on a mobile
GPU integrated in an Nvidia Jetson TK1 mobile development board,
targeting at a mobile transmitter. The algorithm level and data level
parallelism are carefully explored for efficient mapping of the DPD
algorithm and full utilization of the mobile GPU resources. We analyze
the throughput and timing performance of our implementation and
verify the functionality of DPD experimentally on a novel software-
defined mobile terminal. The results show that our proposed mobile
GPU driven digital predistortion design not only achieves real-time high
performance, but also offers programmability and reconfigurability for
design upgrading and extension.

Index Terms—mobile GPU, digital predistortion, software-defined ra-
dio, cognitive radio, reconfigurability

1. INTRODUCTION

Current wireless transceivers usually utilize the direct conversion
radio architecture, which can perform the up-conversion and down-
conversion of complex in-phase and quadrature (I/Q) signals [1], to
achieve low cost and high performance. However, impairments may
exist in such transceivers, such as nonlinearity of power amplifier
(PA), I/Q imbalance, local oscillator (LO) leakage, etc, resulting
from the imperfection of analog RF and digital baseband circuits.
At the transmitter (TX) side, when driving a PA to its saturation
region for better signal coverage and efficiency, the nonlinear PA
effects will cause spurious spectrum emission and intermodulation
distortion (IMD), which are especially harmful in non-contiguous
carrier aggregation (CA) scenarios in LTE-Advanced systems [2].
The promising cognitive radio (CR) system also requires proper
control of spurious spectrum components to avoid the violation of
the interference constraints between secondary and primary user [3].

Recently, adaptive digital predistortion (DPD) [4] [5] is shown
to be an effective method for suppressing the unwanted spectrum
at the PA output by predistorting the signals at digital baseband
before passing through the PA. However, inserting a DPD module
in a transmitter baseband will introduce extra baseband processing
complexity, and sacrifice the throughput and latency performance at
a transmitter. In addition, the digital predistorter parameters, which
have a significant effect on the DPD suppression functionality, are
expected to be reconfigurable, so that they can be easily updated to
adapt to the various PA conditions and wireless communication stan-
dards. Therefore, DPD implementations with both high performance
and high flexibility are needed in the context of software-defined
radio (SDR) systems and CR systems.

General-purpose computing on graphics processing units (GPGPU)
[6] has been seen as an alternative for accelerating baseband process-
ing in SDR systems. Compared to conventional baseband components
implemented in FPGA or ASIC, GPU can not only achieve high

This work was supported by the US NSF under grants ECCS-1408370,
CNS-1265332, ECCS-1232274, and the Finnish Agency of Innovation, Tekes

throughput on computationally intensive workloads, such as LDPC
decoding [7], MIMO detection [8], etc, but also offer high-level
programmability to simplify the baseband design and upgrade.

Currently, the existing GPU accelerated baseband components are
all based on desktop GPU devices, targeting at a software-defined
basestation [9] [10]. With the development of embedded computing
platforms, we are motivated to investigate the capability of mobile
GPU on accelerating a parallel DPD design for a software-defined
mobile terminal. In this paper, we present the first—to the best of
the authors’ knowledge—published mobile GPU driven application
in the wireless communication area. The proposed DPD design on
mobile GPU is able to achieve real-time performance on predistort-
ing streaming baseband samples for a mobile transmitter. We also
show its high reconfigurability for supporting various transmission
signal types, such as single LTE carrier or non-contiguous LTE
component carriers (CC) in CA scenarios, and for easily updating
DPD parameters adapted to various transmission environments and
radio hardware. Furthermore, the functionality of the DPD design is
experimentally verified on our novel software-defined mobile terminal
platform, which is constructed by an Nvidia Jetson TK1 board
[11] integrated with a mobile GPU and a WARP [12] radio board
integrated with PA and radio interfaces, to show the DPD suppression
effect incorporating a real PA. In addition, our design can be extended
to a desktop GPU for a software-defined basestation.

The paper is organized as follows. Section II introduces the
DPD algorithm to be implemented. Section III illustrates the GPU
implementation details and the experimental verification of DPD
functionality on our software-defined mobile transmitter. Section IV
discusses the major results and Section V draws the conclusion.

II. DPD ALGORITHM

We adopt the DPD algorithm developed in our previous work [4],
which can jointly estimate the major analog impairments, i.e., the
PA distortion, I/Q imbalance, and LO leakage, in a direct-conversion
transmitter. This algorithm achieves good DPD suppression effect
according to simulation results [4], and has inherent parallelism and
manageable complexity for efficient implementation. The whole DPD
process includes two stages: an iterative training stage for DPD
parameter estimation and a predistortion stage for predistorting new
samples with finalized DPD parameters.

The predistorter is based on an augmented parallel Hammerstein
(APH) structure [4], as shown in Figure 1(a). Assume we have N
modulated I/Q samples xo, 1, T2, -+, Tn—1 to transmit, instead
of sending them directly to the PA and radio, we can first pass
them through the DPD module to generate the predistorted samples
Zo0, 21, 22, -+, ZzN—1 at baseband. Then the predistorted samples
are sent to the PA and radio to jointly compensate for the major
impairments at TX. Here, the relationship between a certain DPD
input x,, (n=0,1,2,---,N-1) and DPD output z, = DPD(x,) is:

Mo

P Ly
Zn= Y Y hpatp(@ai) +

k=0

Lq
Z hakq(Tn-1) +c
k=0

e

p=1

podd d

QQ
°

[PPDC) Main branch

i B\

vi () AL () - P—D

Yu | copy of |z,
AN B
[DPD"™(+)

PA(+)

V() /

Conjugate branch A ~
Ll,... r Q= DPDV(+
T ol 2, S
err, m "
m 7

(a) APH DPD architecture
Figure 1. DPD architecture

(b) Indirect learning architecture

Here, ¥ (20) = 2P~ @, and B (wn) = () = |2a|""a,
are the p'™ order polynomial of direct signal x, and the ¢'*
order polynomial of conjugate signal xj,, respectively, and only
odd order polynomials are considered in this model, that is, p €
{1,3,5,---, P}, ¢ € {1,3,5,---,Q}. P and Q are the highest
polynomial orders of the main and conjugate branches respectively.
Generally, the conjugate signals stemming from I/Q imbalance are
clearly weaker than direct signals, so we can set, for example, P = 5
and @ = 3, without losing much predistorting effect. hp r and hq.
indicate the k*" impulse response of L,, tap FIR filter H,(2) and L,
tap FIR filter H4(z), respectively, and c is the compensator coeffi-
cient considering the LO leakage. We define APH filter coefficient
vectors hp=[hp,0 hp71 . -;hp,Lpfl]T and hq=[hq,0 hqyl cee hq,qullT,
and stack all hy, and hq as well as c together to form a single
coefficient vector h=[h], hY - .. hf Bf ﬁ; e ﬁg ¢]T. The coefficient
vector h needs to be estimated during the iterative training stage
until convergence to finalize the APH DPD, which can be used to
predistort all the following samples in the predistortion stage until
another retraining is needed in another PA condition or environment.

The DPD parameter estimation stage is based on an indirect
learning architecture (ILA) [13], which is shown in Figure 1(b). A
feedback loop is established for iterative training. In the i iteration,
we stream M training samples y(()z)7y§l), yél) T yg&)_l through the

DPD function DPD(Z_I)(J estimated from the (3-1)*" iteration. For

each sample yﬁfl) (m=1,2,3 --- M-1), we calculate the predistorted

samples z5) = DPD(i_l)(yﬁ,i)) and send z$) to the PA (in the first
iteration, z\Y) = yﬁ,p). Then we measure the samples &) scaled by

the PA gain G in the feedback loop and update the filter coefficient
vector h of DPD(Z) (-) based on the least squares (LS) estimation [4].

Finally we insert the estimated DPD(Z)(~) in the TX chain for the
(i+1)*" iteration. 1-3 iterations are usually needed for h to converge
and for finalizing the DPD parameters used in the predistortion stage.

For a certain PA in an environment without many fluctuations, it
is not necessary to retrain the DPD frequently, so the training stage
can be performed offline. Once the DPD parameters are finalized,
real-time predistortion of the new streaming samples is required.
Therefore, in the following section, we focus on the parallel GPU
implementation of the finalized APH DPD in the predistortion stage.
Considering the high flexibility of our implementation, we can easily
update the DPD parameters once a retraining does happen.

III. DPD IMPLEMENTATION AND EXPERIMENTAL VERIFICATION

In this section, we first discuss the implementation details of the
APH DPD on a CUDA enabled mobile GPU. Then we experimentally
verify the functionality of DPD on a novel software-defined mobile
transmitter which integrates such a mobile GPU and also includes
a radio platform. It is easy to transfer and extend our mobile GPU
driven DPD design to a desktop GPU for supporting real-time DPD
processing targeting at a potential 5G software-defined basestation,
which requires much higher baseband performance for realizing

CPU memory [DPD parameters][Oulpul Dala]
a o

GPU global memory [Filter Coefﬁciems]lLO Leakage Est.]

Input [Polynomial Predistorted|
Samples

amples Results ®

S Filtering

4

| Polynomial Kernel
'

Hy (-
Filtering
Kernel

GPU computing cores

Figure 2. High-level dataflow diagram

wideband [14] techniques, so a supplementary implementation on
a desktop GPU is also discussed here and profiled in Section IV for
completeness.

A. Experimental hardware

We use an Nvidia Jetson TK1, a mobile development board, for
our mobile GPU implementation. The Jetson TK1 board is integrated
with an Nvidia Tegra K1 28nm SOC including a Kepler mobile GPU
GK20A (192 CUDA cores) and 4-Plus-1 quad-core ARM Cortex
A15 CPU. Nsight Eclipse edition 6.5 and CUDA tookit 6.5 are used
for design implementation, cross compilation, remote debugging and
performance profiling with a host Ubuntu 12.04 operating system
(OS) running on a desktop and a remote Linux For Tegra (L4T)
R21.2 OS running on Jetson. A supplementary DPD implementation
on a GTX TITAN desktop GPU with 2688 CUDA cores is discussed
for comparison. For the experimental verification of DPD, we use
a WARP version3 board with MAX2829 transceiver and Anadigics
AWL6951 PA as the radio platform and an Agilent E4404B spectrum
analyzer to monitor the radio output in real-time.

B. DPD implementation on GPU

1) High-level dataflow: Figure 2 shows the high-level dataflow di-
agram for the DPD implementation on GPU, and the numbers beside
the arrows illustrate the order in which the original input samples
propagate between memory and computing cores to finally get the
predistorted output samples. As shown in Figure 2, we have three
major computation kernels in the trained and finalized DPD design for
the run-time predistortion stage: polynomial kernel, filtering kernel
and accumulation kernel. Each input sample z,, passes through those
kernels to generate the DPD output z,,: polynomial kernel calculates
different order polynomials of x, in the main branch and conjugate
branch; filtering kernel computes the polynomial results based on the
estimated filter coefficient h; accumulation kernel adds the filtering
results of all the p and ¢ as well as the LO leakage estimation c to
generate the predistorted sample z,.

2) Multithreaded kernel execution: In the polynomial kernel,
assume we have /N modulated I/Q samples xo, 1,22, - ,ZN—1 as
input, for each sample x, (n=0,1,2,---,N-1), our polynomial kernel
will generate R = (P +1)/2+ (Q + 1)/2 polynomials, i.e, ¢p(xx)
and ¢, (zn) forallp € {1,3,5,--- , P}, q € {1,3,5,--- , Q}. Since
the polynomial computation between each sample x, has no data
dependency, we launch our polynomial kernel with N threads to
calculate the R polynomials for each of the NV samples x,, in parallel.
Specifically, we set the block size to 192 threads per block and thus
N /192 blocks, considering we have 192 CUDA cores on the mobile
GPU. The N R polynomials at the output of the polynomial kernel
will be streamed to the following filtering kernel. In the filtering
kernel, for each sample x,,, we pass its R polynomial results through
their corresponding filters, for example, ¢, (z,) will pass through

Table 1
APH DPD CONFIGURATION

Paramet [Main branch
Max polynomial order P=5
Number of filters 3

Taps per filter L,=5 (for each p)

[Conjugate branch

Q=3
3

L =5 (for each q)

Stream 1 [H to D| Poly. Kemel | Filtering Kemel | Aceum. Kemel D to H]

Stream 2 ‘H to D‘ Poly. Kernel ‘ Filtering Kernel ‘Accum. Keme]‘D to H‘
Stream 3 ‘H to D‘ Poly. Kernel ‘ Filtering Kernel ‘/\ccum Keme]‘D to H‘
. .
. ‘.
Stream N ‘II to D‘ Poly. Kernel ‘ Filtering Kernel ‘Accum. Kemel‘D to H‘

H to D: Host to Device Memcpy } }

D to H: Device to Host Memepy DPD Latency

Figure 3. Multi-stream scheduling on desktop GPU

H,(z), which is configured by the estimated filter coefficient hy.
The filtering computation between each of the R filters also has no
data dependency stemming from the parallel APH architecture, so in
the filtering kernel, we can have even higher N R degree parallelism
for calculating the filtering results of each filter for each sample
simultaneously. Therefore, the filtering kernel can be launched with
N R /192 thread blocks with 192 threads in each block and then the
NR filtering results will be sent to the next accumulation kernel.
In the accumulation kernel, for each sample z,, we add up its
corresponding R filtering results as well as the LO leakage estimation
c to generate its corresponding predistorted result z,. Similarly, we
can launch N/192 thread blocks with 192 threads in each block for
the processing of each sample in parallel.

In above kernels, the value of R is decided by the APH structure,
indicating the total number of parallel filters in a DPD, and it should
be tuned in the training stage for better DPD suppression effect. Table
I shows a typical configuration of the APH DPD architecture, and
the configuration is also used for performance profiling in Section
VI. The value of N can scale the computational workload and kernel
parallelism degree, and usually we set a large N, eg, 10° — 10°, for
our mobile GPU to achieve and maintain high occupancy ratio for the
parallel cores, and set an even larger N for a desktop GPU to fully
utilize its computational resources. For real-time data streaming, we
can provide a batch of N-sample packets and send those packets to
the DPD continuously.

3) Memory access optimization: To efficiently access the data for
kernel computation, careful utilization of the GPU memory hierarchy
is required. Given that the memory copy between CPU and GPU
will introduce significant latency overhead, we only copy the DPD
input from the CPU at the beginning of the kernel execution and
copy back the final predistorted samples back to CPU at the end.
We utilize the GPU global memory for the necessary data sharing
between the concatenated kernels, such as sharing the polynomial
computation results and filtering computation results, as shown in
Figure 2. Accessing the GPU global memory will still cost hundreds
of GPU clock cycles, so we carefully assign the limited register
resources to store the frequently used temporary local variables for
fast numerical computation inside the multithreaded kernels. We also
take advantage of some special GPU memory modules, such as
constant memory, to store the estimated filter coefficients for efficient
broadcasting during filtering computation.

A GPU provides powerful floating-point (FP) computation capabil-
ity, so in our implementation, the DPD input, predistorted output, as
well as intermediate results shared among kernels, are all represented
by a 32 bit FP data type. In addition, a GPU can group the global
memory requests within a 32-threaded warp to a single memory
transaction for memory access overhead reduction [16], so alignment
of those FP data in the GPU global memory is necessary for coalesced
data access to achieve better performance. Here, the IV input samples
of DPD are stored with consecutive addresses in the global memory

System Architecture

{zm o Crraads Radio (pa
Moile " m Interfaces |

DPD Kernels

Jetson TK1 WARP

F
Spectrum Anal

Figure 4. System architecture and experimental setup

T
Software-defined Mobile Transmitter

and thus originally aligned. In the polynomial kernel, there will be
R polynomial results for each sample z,. To write the total NR
polynomial results to global memory in a coalesced way, we need R
writin%b iterations inside the IN-threaded polynomial kernel. In a cer-
tain r*" (r=1,2,- - -, R) iteration, we pack the 7" polynomial result of
each x,, (we generate the R polynomial results of x,, in the order of
wl(x’ﬂ)7 w3(xn)a e 7wP($n)7 1/’1 (.’L'n), 1/}3(:8”)5 e 7¢Q(mn)) and
write them to global memory by N threads in parallel. In this way,
those N results will occupy consecutive addresses within an N-
sample length memory segment. In the later accumulation kernel,
we also read the filtering results in a coalesced way with similar data
alignment. Such coalesced memory access is shown to significantly
reduce the memory transaction overhead and improve the throughput.

4) Multi-stream scheduling: The discussed memory optimization
strategies are able to enhance the throughput and timing performance
on both mobile GPU and desktop GPU. In this part, we illustrate an
advanced optimization strategy, multi-stream scheduling, for further
performance optimization. Note that such a strategy is only realized
in our desktop GPU-based DPD reference design, since the current
mobile GPU driver on the Jetson TK1 board does not fully support
the concurrent kernel execution mode. Figure 3 illustrates the multi-
stream scheduling strategy.

The major goal of multi-stream scheduling is to overlap the mem-
ory copy latency between CPU and GPU with the kernel execution
latency on GPU. To realize this, we first allocate the host CPU memo-
ries as page-locked memories, which can support the direct memory
access (DMA) upon GPU memory requests without involving the
control of the CPU process [16], enabling asynchronous memory
copy between host and device. Then we generate multiple streams in
GPU, with each stream controlling the asynchronous memory copy
and kernel execution on a segment of samples. In different streams,
memory copy and kernel execution can occur concurrently and be
overlapped. By performing multi-stream scheduling on the desktop
GPU, we can achieve 11%-16% reduction of the total latency on
predistorting streaming samples according to profiling results.

C. DPD functionality verification

We first introduce a novel mobile GPU driven software-defined
mobile terminal platform. Figure 4 shows the system architecture and
experimental setup of our mobile platform. We use WARPLab [12],
a MATLAB and FPGA based software-defined radio framework, as
the starting point and customize it for the prototype implementation
of our mobile terminal. In our previous work [9], we were able to
implement a high performance GPU-based software-defined basesta-
tion based on our customized WARPLab. Here, benefiting from the
powerful and flexible mobile GPU integrated on the Jetson board,
we develop a software-defined mobile terminal platform with similar
system architecture using the Jetson board and WARP radio board.

The key idea of such a system is to implement the digital baseband
processing components, such as DPD, on the mobile GPU integrated
on Jetson for both high performance and high flexibility, since

Table 1T
PERFORMANCE COMPARISON

[90nm cMOs TTA 17) [d45nm cMos TTA 171 [Mobile GPU
Poly. throughput 44 .6Msample/s 114.3Msample/s 252.2Msample/s
Filter throughput 39.1Msample/s 100.0Msample/s 156.0Msample/s
Sample precision 16-bit float 16-bit float 32-bit float
Table III

LATENCY COMPARISON ON PREDISTORTING 2 x 106SAMPLES

[Poly. Kernel [Filtering Kernel [Accum. Kernel

Mobile GPU (@852MHz) [785.59us [1.28ms [747.43 s

Desktop GPU(@876MHz) | 39.26us | 7696715 [®28us

conventional FPGA or ASIC accelerated baseband may suffer from
limited flexibility and require significant design period. Such platform
can serve as a transmitter (TX) or a receiver (RX) when TX or
RX baseband processing kernels for a certain wireless standard are
implemented on the mobile GPU. Note that we have intensively
customized the original WARPLab in C and CUDA to replace the
MATLAB environment to improve both the baseband processing
performance and Ethernet throughput for data streaming. Please refer
to [9] for more customization details.

Here, we use our mobile terminal platform as a mobile trans-
mitter and the finalized DPD module with estimated parameters is
implemented on the Jetson mobile GPU. The streaming samples
are created from Jetson CPU and then predistorted on the mobile
GPU. The predistorted samples are copied back to Jetson CPU and
then streamed to WARP board via Ethernet based on socket APIs.
Those samples will be passed through the FPGA-based radio control
modules and the real PA and radio interfaces on WARP to transmit
out. As shown in Figure 4, the final radio output can be monitored by
a spectrum analyzer in real-time so that the DPD suppression effect
on spurious spectrum components is verified experimentally in this
system. To describe the properties of the PA on WARP, we gather
the PA input and output data and generate a memoryless PA model:

PAout = 1 - PAin + ,33|PAm\2PAin + ﬁs\PAm|4PAm7

where 1 = 0.9490 — 0.0197:, 83 = 0.4885 + 0.1071i, 35 =
—1.0156—0.04744 are the 1°¢, 37, 5" polynomial coefficients of a 5
order WARP PA model. Note that we also perform the offline training
stage experimentally on WARP for the DPD parameter estimation
before the real-time DPD experiments. The training feedback loop
can be established by connecting RF antenna connector A (RFA, as
TX) and RF antenna connector B (RFB, as RX) of WARP so that
we can gather the signals in the feedback path based on WARPLab
and then do the offline training to finalize the DPD parameters.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. GPU performance evaluation

1) Throughput: We profile the kernel computation throughput at
different numbers of DPD input samples, i.e., different configuration
of N, on the mobile GPU, and show the results in Figure 5(a). With
the increase in the number of samples, more parallel threads will be
generated to maintain a higher occupancy ratio of GPU cores and
finally drive the mobile GPU to achieve its peak performance. Over
70 Msample/s peak kernel computation throughput for the whole
predistortion stage can be achieved on the mobile GPU after a large
N = 2 x 10°. It is worth mentioning that the mobile GPU clock
frequency also has significant effect on the throughput performance
and GPU power consumption and can actually be modified on Jetson
[18]. In Figure 5(a), the results are measured under the default GPU
clock rate of Jetson, i.e., 852MHz. In Figure 5(b), we show the kernel
throughput (at a large enough N = 2 x 10%) under different configura-
tions of the mobile GPU clock frequency. There is also a performance
upper bound when increasing the frequency, which is due to the
overhead of GPU thread deployment and scheduling on computing
cores and the limitation of memory resources and bandwidth. In

7 280
a
70 — E 70
b
< 69 = 60
5 5
3 / i
568 5 50
ol : /
i< 67 I £ 40
66, S 30 /
| a0/
65 2 20,
5 I g /
O 64 o
Rl 31
2 2
3 63 g 0
X 70 1 2 3 4 X 0 200 400 600 800 1000
Number of Samples (x 105) GPU Clock Frequency (MHz)
(a) Different N (b) Different clk. freq.
Figure 5. Throughput performance
0 0

3

N

L\x

— Without DPD Bt
—Fifth order APH DP|

N
=]

)ﬂ K Jnl
Y AN
e [ihout bPD ‘ W

—Fifth Order APH DPD|

[}
=]

&
<]

Power in 1MHz (dBm)
g

Power in 1 MHz (dBm)
. N Iy \
o

&
S
&
S

0

-20 0 2 -20 0 20
Frequency (MHz) Frequency (MHz)

(a) Single carrier (b) Non-contiguous CA

Figure 6. DPD effect on spurious spectrum suppression

Table II, we compare the peak performance of our mobile GPU
implementation with a previous implementation on Transport Trigger
Architecture (TTA) multiprocessor [17], a programmable application-
specific multiprocessor. A significant performance improvement is
achieved in our mobile GPU based design. We claim that FPGA
and ASIC can be other alternatives of DPD accelerators [19] [20],
but previous FPGA designs are based on different DPD algorithms,
so we omit the performance comparison with those work here for
fairness.

2) Latency: In Table III, We profile and compare the kernel
computing latency performance between the mobile GPU and desktop
GPU. The desktop GPU can significantly outperform the mobile GPU
resulting from its more streaming multiprocessors and higher memory
bandwidth, which is promising for supporting real-time DPD on a
potential wideband software-defined basestation in the 5G context,
while our mobile GPU based DPD design can be specifically applied
to a high performance software-defined mobile terminal.

B. DPD effect on a real radio platform

On our Jetson-WARP based software-defined mobile platform, we
experimentally verify the DPD suppression effect on spurious spec-
trum components using various baseband signals. A single 10MHz
LTE carrier and two non-contiguous 3MHz LTE carriers with 10MHz
spacing are used as input of DPD under single-carrier and non-
contiguous CA scenarios, which are shown in Figure 6(a) and Figure
6(b), respectively. Around 10 dB suppression on spurious spectrum
components can be experimentally achieved under both scenarios.

V. CONCLUSION

In this paper, we implement a digital predistortion module on a
mobile GPU, presenting the feasibility and performance of using
mobile GPU for reconfigurable baseband processing in a mobile ter-
minal. By taking advantage of powerful computing features of mobile
GPU, our GPU-accelerated DPD design can achieve real-time high
performance on predistorting streaming samples. The experimental
verification of DPD functionality on our novel Jetson-WARP based
software-defined mobile transmitter shows evident suppression effects
on spurious spectrum components when transmitting various types
of LTE signals through a real radio platform. Benefiting from the
programmablility of GPU, our DPD implementation also provides
high flexibility on adaptive design reconfiguration and extension.

[1

—

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

P-1. Mak, S.-P. U, and R. Martins, “Transceiver architecture selection:
Review, state-of-the-art survey and case study,” IEEE Circuits and
Systems Magazine, vol. 7, no. 2, pp. 625, Second 2007.

E. Dahlman, S. Parkvall, and J. Skold, 4G LTE/LTE-Advanced for Mobile
Broadband, 2011.

S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 2, pp. 201-220, Feb 2005.

L. Anttila, P. Handel, and M. Valkama, “Joint mitigation of power
amplifier and I/Q modulator impairments in broadband direct-conversion
transmitters,” IEEE Transactions on Microwave Theory and Techniques,
vol. 58, no. 4, pp. 730-739, April 2010.

M. Abdelaziz, L. Anttila, J. Cavallaro, S. Bhattacharyya, A. Moham-
madi, F. Ghannouchi, M. Juntti, and M. Valkama, “Low-complexity
digital predistortion for reducing power amplifier spurious emissions
in spectrally-agile flexible radio,” in 9th International Conference on
Cognitive Radio Oriented Wireless Networks and Communications
(CROWNCOM), June 2014, pp. 323-328.

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899,
May 2008.

G. Wang, M. Wu, B. Yin, and J. Cavallaro, “High throughput low latency
LDPC decoding on GPU for SDR systems,” in IEEE Global Conference
on Signal and Information Processing (GlobalSIP), Dec 2013, pp. 1258—
1261.

M. Wu, B. Yin, and J. Cavallaro, “Flexible N-way MIMO detector on
GPU,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct
2012, pp. 318-323.

K. Li, W. Michael, G. Wang, and J. Cavallaro, “A high performance
GPU-based software-defined basestation,” in 48th IEEE Asilomar Con-
ference on Signals, Systems, and Computers (ASILOMAR), 2014.

S. Bang, C. Ahn, Y. Jin, S. Choi, J. Glossner, and S. Ahn, “Implementa-
tion of LTE system on an SDR platform using CUDA and UHD,” Analog
Integr. Circuits Signal Process., vol. 78, no. 3, pp. 599-610, Mar. 2014.
Nvidia Jetson TKI. [Online]. Available:
http://www.nvidia.com/object/jetson-tk 1 -embedded-dev-kit.html

WARP Project. [Online]. Available: http://warpproject.org/trac/

C. Eun and E. Powers, “A new Volterra predistorter based on the indirect
learning architecture,” IEEE Transactions on Signal Processing, vol. 45,
no. 1, pp. 223-227, Jan 1997.

S. Chen and J. Zhao, “The requirements, challenges, and technologies
for 5G of terrestrial mobile telecommunication,” IEEE Communications
Magazine, vol. 52, no. 5, pp. 3643, May 2014.

E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 186—-195, February 2014.

Nvidia CUDA tookit documentation. [Online]. Available:
http://docs.nvidia.com/

A. Ghazi, J. Boutellier, M. Abdelaziz, X. Lu, L. Anttila, J. Cavallaro,
S. Bhattacharyya, M. Valkama, and M. Juntti, “Low power implementa-
tion of digital predistortion filter on a heterogeneous application specific
multiprocessor,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May 2014, pp. 8336-8340.

Jetson performance tuning. [Online]. Available:
http://elinux.org/Jetson/Performance/

G. Cunha, S. Farsi, B. Nauwelaers, and D. Schreurs, “An FPGA-based
digital predistorter for RF power amplifier linearization using cross-
memory polynomial model,” in Integrated Nonlinear Microwave and
Millimetre-wave Circuits (INMMiC), 2014 International Workshop on,
April 2014, pp. 1-3.

C. Quindroit, N. Naraharisetti, P. Roblin, S. Gheitanchi, V. Mauer, and
M. Fitton, “FPGA implementation of orthogonal 2D digital predistortion
system for concurrent Dual-Band power amplifiers based on Time-
Division multiplexing,” IEEE Transactions on Microwave Theory and
Techniques, vol. 61, no. 12, pp. 4591-4599, Dec 2013.

