
Decentralized Equalization
for Massive MU-MIMO on FPGA

Kaipeng Li1, Charles Jeon2, Joseph R. Cavallaro1, and Christoph Studer2

1Department of Electrical and Computer Engineering, Rice University, Houston, TX
2School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

Abstract—Massive multi-user multiple-input multiple-output
(MU-MIMO) relies on large antenna arrays that serve tens
of user equipments in the same time-frequency resource. The
presence of hundreds of antenna elements and radio-frequency
(RF) chains at the base station (BS) enables high spectral
efficiency via fine-grained beamforming, but poses significant
practical implementation challenges. In particular, conventional
linear equalization algorithms used in the massive MU-MIMO
uplink (users transmit to the BS), such as zero-forcing, typically
require centralized architectures, which cause excessively high
computational complexity and interconnect bandwidth between
the baseband processing unit and the RF chains. In order to
mitigate the complexity and bandwidth bottlenecks, we propose
a VLSI design of a decentralized feed-forward architecture and a
parallel equalization algorithm relying on large-MIMO approxi-
mate message passing (LAMA). We use high-level synthesis (HLS)
to develop the VLSI architecture and provide corresponding
FPGA implementation results. Our results demonstrate that the
proposed decentralized LAMA equalizer achieves competitive
performance and complexity as existing centralized solutions that
have been designed on register-transfer level.

I. INTRODUCTION

Massive multi-user multiple-input multiple-output (MU-
MIMO) is widely believed to be a core technology in fifth-
generation (5G) wireless systems [1]. By equipping the base
station (BS) with hundreds of antenna elements that serve
tens of user equipments (UEs) simultaneously and in the same
frequency band, massive MU-MIMO promises significantly
higher spectral efficiency and link reliability than traditional,
small-scale MIMO systems [2]. In the uplink phase (UEs
communicate to the BS), equalization and data detection at
the BS are necessary to recover the transmitted data streams
from each UE. In order to realize the full spectral-efficiency
benefits of massive MU-MIMO, linear equalizers, such as zero-
forcing (ZF) or minimum mean-square error (MMSE)-based
equalizers, are required [3]. Such linear equalization schemes
typically rely on centralized processing, i.e., all receive signals
and full channel state information (CSI) must be available at a
single baseband processing unit that carries out the necessary
computations. Such centralized solutions, however, require that

The work of KL, CJ, JRC, and CS was supported in part by Xilinx, Inc., the
US National Science Foundation (NSF) under grants CNS-1265332, ECCS-
1232274, ECCS-1408370, CNS-1717218, ECCS-1408006, CCF-1535897,
CAREER CCF-1652065, CNS-1717559, and with hardware and software
support from Texas Advanced Computing Center, Intel Hardware Accelerator
Research Program, and Amazon EC2 cloud instances with Xilinx FPGAs.

raw baseband and CSI data from hundreds of antennas must
be transferred into a single computing fabric, which results
in excessively high data rates that cannot be sustained by
existing interconnect technologies, such as the common public
radio interface (CPRI) [4], and by typical chip input/output
(I/O) bandwidths [5]. In addition, even if there were means
to transport the required data into a single computing fabric,
processing these large amounts of data (e.g., for equalization)
easily exceeds the storage capabilities and processing power of
modern signal-processing fabrics, such as field-programmable
gate arrays (FPGAs). Put simply, centralized massive MU-
MIMO architectures will be unable to support systems with
hundreds of antenna elements and RF chains.

A. Decentralized Baseband Processing

In order to mitigate these bandwidth and processing bottle-
necks, existing massive MU-MIMO prototype designs, such
as the Argos [6], the LuMaMi [7], and the Bigstation [8]
testbeds, either rely on maximum ratio combining (MRC)
which enables fully distributed equalization at the antenna
elements, or on parallel processing across subcarriers in the
frequency domain. However, MRC results in rather low spectral
efficiency and parallel processing in the frequency domain
still requires access to data from all BS antennas, which
limits the scalability in terms of the number of antennas.
In order to avoid theses issues while enabling high spectral
efficiency via ZF or MMSE equalization, recent work in [5],
[9], [10] proposed decentralized baseband processing (DBP).
This approach enables parallel equalization and precoding
on multiple computing fabrics, and scales well to massive
MU-MIMO systems with a large number of antennas.1 The
proposed algorithms, however, rely on repeated consensus-
information exchange [5], which suffers from high chip-to-chip
transfer latency that limits the achievable throughput. To avoid
this issue, reference [13] proposed a feedforward architecture
in combination with the nonlinear large MIMO approximate
message passing (LAMA) equalizer [14], which minimizes the
latency issues of DBP without sacrificing spectral efficiency.

1Distributed processing was also proposed for coordinated multipoint
(CoMP) [11] and cloud radio access networks (C-RANs) [12] for multi-cell
transmission. In contrast to these methods, DBP as in [5], [9], [10], [13] and
this work are targeted for massive MU-MIMO systems in which the baseband
processors are collocated with one antenna array in a single cell.

CHEST

equalization

RF

RF

K antennas

equalization

CHEST

RF

RF

C centralized
processor

𝑥�1 ,𝜎12

𝑥�𝐶 ,𝜎𝐶2

𝑥� ,𝜎2

K antennas

Fig. 1. Fully-decentralized feed-forward equalization architecture. Channel
estimation (CHEST) and equalization are performed in a decentralized manner
at each of the C clusters. The local equalization estimates are fused at a
centralized processor which calculates a final estimate via weighted addition.

B. Contributions

In this paper, we build upon the fully-decentralized feed-
forward DBP architecture put forward in [13] and develop
a reference FPGA design that enables scalable and high-
throughput DBP in massive MU-MIMO systems. We consider
the architecture illustrated in Fig. 1, in which the BS antenna
array is divided into C clusters, each associated with indepen-
dent RF circuitry and computing hardware. In each cluster, we
perform equalization based on the LAMA equalizer [13], [14]
solely using the signals received from the associated antennas
and local CSI. The C equalization results from each cluster
are then fused at a centralized BS processor which enables an
error-rate performance that is close to that of centralized linear
MMSE equalization. As a proof-of-concept of our approach,
we use high-level synthesis (HLS) to design a configurable and
modular single-FPGA implementation that can be adapted to
perform DBP on multi-FPGA systems in the future. By using
a number of optimization strategies on HLS and hardware
level, our implementation results show that one can achieve
competitive error-rate performance, throughput, and hardware
complexity compared to existing centralized solutions that have
been designed on register-transfer level (RTL) using hardware
description languages (HDL).

II. FULLY-DECENTRALIZED EQUALIZATION VIA LAMA

We now introduce the system model and summarize fully-
decentralized equalization via the LAMA algorithm.

A. System Model

We consider a massive MU-MIMO uplink system that
uses orthogonal frequency-division multiplexing (OFDM). The
system consists of U single-antenna UEs, each of which is
associated to a dimension of the data vectors xw ∈ OU
with subcarrier indices w = 1, . . . ,W ; these data vectors
are transmitted to a B-antenna BS, where O denotes the
transmit constellation alphabet (e.g., QPSK). The input-output
relation of the uplink channel at subcarrier w is modeled by
yw = Hwxw + nw, where yw ∈ CB corresponds to the
received signal vector at the BS, Hw ∈ CB×U represents the
uplink channel matrix, and nw ∈ CB models i.i.d. circularly
symmetric complex Gaussian noise with variance N0 per com-
plex entry. For each subcarrier, the BS performs equalization

followed by data detection to extract estimates x̂w of the
transmitted data vectors xw ∈ CU using the received signal
vector yw and the channel matrix Hw. In what follows, we
consider perfect synchronization and channel state information
at the BS; we also omit the subcarrier index w.

B. Algorithm Details

As shown in Fig. 1, the estimates of the transmitted data
vector x̂ are computed in a decentralized manner by partitioning
the BS antenna array into C clusters. Each cluster is associated
with K = B/C antennas and RF chains, and each cluster
contains a dedicated baseband processor. Each cluster c =
1, . . . , C only has access to the local receive vector yc ∈
CK , which contains the received signal from the associated
antenna elements, and access to local CSI2 Hc ∈ CK×U ,
which represents the channel matrix associated to the antennas
connected to cluster c. We focus on fully-decentralized (FD)
equalization as put forward by [13]: each cluster c performs
equalization using yc and Hc to compute a local estimate x̂c as
well as the associated post-equalization noise-and-interference-
variance σ2

c . A centralized processor is then used to fuse all C
estimates into a final estimate via the weighted sum x̂ =∑C
c=1 λcx̂c where λc = 1

σ2
c
(ΣCc′=11/σ2

c′)
−1, c = 1, . . . , C,

that minimizes the post-equalization noise variance [13].
A straightforward way for performing FD equalization would

be to use conventional linear MMSE equalization in each
cluster c = 1, . . . , C. For example, in each cluster c, one could
compute a local estimate x̂c =

(
HH
c Hc + N0

Ex
IU
)−1

HH
c yc,

where Ex denotes the average per-user transmit power, and
IU represents the U × U identity matrix. In order to obtain
a superior local estimate, we resort to the nonlinear LAMA
algorithm proposed in [13]. Specifically, we compute a slightly
modified version of the FD-LAMA algorithm proposed in [13].

Algorithm 1 (FD-LAMA [13]). In the first iteration, we initial-
ize s1c,` = 0 and φ1c,l = Ex for c = 1, . . . , C, ` = 1, . . . , U . We
furthermore set v1

c = 0 and x̂1
c = yMRC

c +(IU−Gc)s
1
c+v1

c for
c = 1, . . . , C, where yMRC

c = HH
c yc is the local MRC output,

and Gc = HH
c Hc is the local Gram matrix. For each of the

following FD-LAMA iterations t = 2, . . . , Tmax, we compute

stc = F(x̂t−1
c , N0 + βφt−1

c)

φtc = 〈G(x̂t−1
c , N0 + βφt−1

c)〉

vtc =
βφt

c

N0+βφ
t−1
c

(x̂t−1
c − st−1

c)

x̂tc = yMRC
c + (IU −Gc)s

t
c + vtc,

where 〈z〉 = 1
U

∑U
`=1 z`. The functions F(x̂c,`, τc) and

G(x̂c,`, τc) operate entry-wise on vectors and are defined by

F(x̂c,`, τc) =
∫
x`
x`f(x`|x̂c,`)dx`

G(x̂c,`, τc) =
∫
x`
|x`|2 f(x`|x̂c,`)dx` − |F(x̂c,`, τc)|2.

Here, f(x`|x̂c,`) is the posterior probability density function
of the transmit symbol x` which is calculated as in [13].

2Each cluster estimates the local channel matrix Hc independently; local
CSI is not made available to the other clusters. See [5] for more details.

-10 -5 0 5 1010-3

10-2

10-1

100

average SNR per receive antenna [dB]

sy
m

bo
l e

rro
r r

at
e

(S
E

R
)

MMSE
MRC
FD-LAMA Tmax=1
FD-LAMA Tmax=2
FD-LAMA Tmax=3

(a) K = 32, C = 2, B = 64, and U = 8.

-15 -10 -5 0 510-3

10-2

10-1

100

average SNR per receive antenna [dB]

sy
m

bo
l e

rro
r r

at
e

(S
E

R
)

MMSE
MRC
FD-LAMA Tmax=1
FD-LAMA Tmax=2
FD-LAMA Tmax=3

(b) K = 32, C = 4, B = 128, and U = 8.

Fig. 2. Symbol error-rate (SER) performance of centralized and decentralized equalization. We compare the SER of FD-LAMA with that of centralized linear
MMSE and fully distributed MRC equalization. FD-LAMA approaches the performance of MMSE equalization for a small number of iterations.

In each algorithm iteration, we update the parameters in the
order of sc, φc, vc, and x̂c, so that we can directly extract
x̂Tmax
c at the end of the last iteration to obtain the final estimate

x̂ = ΣCc=1λcx̂
Tmax
c at the centralized BS processor.

C. Error-Rate Simulation Results

We simulate the symbol error-rate (SER) performance of
Algorithm 1 in a massive MU-MIMO system for two system
configurations, {K = 32, C = 2, B = 64, U = 8} and {K =
32, C = 4, B = 128, U = 8}, with QPSK modulation and for
i.i.d. Rayleigh fading channels. Figures 2(a) and 2(b) show the
SER performance of centralized linear MMSE equalization,
fully distributed MRC, as well as FD-LAMA. We see that FD-
LAMA significantly outperforms MRC and is able to approach
the SER performance of centralized MMSE equalization, even
for a small number of iterations. This observation is consistent
with the achievable rate results shown in [13], which implies
that FD-LAMA incurs only little performance loss compared to
that of centralized solutions. Furthermore, since the number of
antennas per cluster K = 32 is fixed for Figures 2(a) and 2(b),
we see that by doubling the total number B of BS antennas
(effectively by doubling C), FD-LAMA still performs similarly
to the linear MMSE equalizer—this indicates that FD-LAMA-
based equalization scales well with the number of BS antennas.

III. VLSI DESIGN

We now describe the VLSI architecture of FD-LAMA. As
a proof-of-concept, we implement our algorithm on a single
FPGA to demonstrate its modularity and scalability. Our design
can be distributed to multiple FPGAs in order to enable true
DBP as is required by massive MU-MIMO systems—the
implementation of such a design is part of ongoing work. We
implemented FD-LAMA via high-level synthesis (HLS) using
Xilinx Vivado HLS (v2017.3), which provides high design
reconfigurability, supports numerous compiler directives for
performance optimization, and often requires lower design
effort than traditional RTL-based design using Verilog or
VHDL. The HLS code is written in C++ and synthesized to

FPGA chip

LAMA
DPE 1

LAMA
DPE 2

LAMA
DPE C

CPE

𝑯𝒄 𝒚𝒄

𝒙�

𝑮𝒄 𝒚𝒄𝑴𝑹𝑪

preprocessing

systolic mat. mult.

LAMA iteration

systolic
mat.
mult.

tanh
unit

recip.
unit

𝒙�𝒄 @ Tmax iters

𝒙�𝟏 𝒙�𝟐 𝒙�𝒄

Fig. 3. Overview of the proposed VLSI architecture. In the context of a
decentralized design on a single FPGA fabric, we implement C decentralized
processing elements (DPEs), and each DPE serves as a local baseband processor
for local FD-LAMA equalization at each of C clusters; local equalization
estimates are fused at a centralized processing element (CPE), which emulates
the centralized BS processor in a decentralized architecture shown in Fig 1.

RTL using Vivado HLS. To optimize the hardware efficiency,
we rely on fixed-point arithmetic. We use the ap fixed〈16, 5〉
data type for most values in our design in order to support
16-bit precision fixed-point numbers with 5-bit integer bits.

A. Architecture Overview

Fig. 3 shows the proposed architecture and the data flow.
We implement a total number of C decentralized processing
elements (DPEs) on a single FPGA fabric for local FD-LAMA
equalization to compute local estimates. The results are fused
at a centralized processing element (CPE) to calculate the
final estimate, i.e., a weighted sum of local estimates. Each
local DPE uses the local channel matrix Hc and local receive
vector yc and performs preprocessing to obtain the local
Gram matrix Gc and the local MRC output yMRC

c . The DPE
then calculates the local equalization estimate x̂c according
to Algorithm 1. After Tmax LAMA iterations, all the local
estimates x̂Tmax

c are passed from DPEs to the CPE which
computes x̂. Since all DPEs and the CPE are integrated on

a single FPGA, the transfer of local estimates between the
DPEs and the CPE can be realized with on-chip memory and
buses with very short latency (using only a few clock cycles).
We note that a multi-FPGA design would require substantially
higher transfer latencies, which will reduce the throughput.

B. Architecture Details and Optimizations

We now focus on the key computations carried out within
the DPEs and the CPE.

1) Preprocessing at DPE: To calculate the local Gram ma-
trix Gc and the MRC output yMRC

c at high throughput and low
latency, we implement efficient matrix-matrix multiplications
and matrix-vector multiplications using a systolic architecture.
Concretely, to compute Gc = HH

c Hc, we partition Hc

into the column vectors h1,c,h2,c, . . . ,hU,c by using the
#pragma HLS ARRAY PARTITION directive; the row vectors
of HH

c are given by hH1,c,h
H
2,c, . . . ,h

H
U,c. We partition the Gram

matrix Gc into isolated entries gu,v,c = Gc(u, v), u, v =
1, 2, . . . , U . By adding the #pragma HLS PIPELINE directive
at the top-level loop for this matrix-matrix multiplication, the
computation of gu,v,c = hHu,chv,c for all values of u, v can be
pipelined via HLS and is executed in a systolic manner with
U ×U operations performed in parallel. Similarly, to compute
the local MRC vector yMRC

c = HH
c yc, we partition yMRC

c

into single entries yMRC
u,c , u = 1, 2, . . . , U , and exploit loop

pipelining to perform U vector multiplications yMRC
u,c = hHu,cyc

for all u = 1, . . . , U in parallel.
The above explained array partition directives are necessary

for efficient scheduling and pipelining of memory read and
write operations. Arrays, as required to store the matrix Gc, if
not partitioned, are implemented as BRAMs that have two
data ports, limiting the throughput of intensive read/write
operations. By partitioning such arrays into smaller banks, we
can synthesize them to multiple smaller distributed BRAMs and
flip-flops on the FPGA, which increases the memory bandwidth
and enables multiple parallel read/write operations.

2) LAMA Iterations at the DPE: In each LAMA iteration,
we need to compute hyperbolic tangent functions and divi-
sions. Specifically, for QPSK modulation, the F function in
Algorithm 1 for updating sc is given by

F(x̂c,`, τc) =
(
Ex

2

)1/2 (
tanh

(√
2Ex<

{ x̂c,`

N0+βφc,`

})
+ j tanh

(√
2Ex={ x̂c,`

N0+βφc,`
}
))
.

Here, <{·} and ={·} extract the real and imaginary parts of a
complex value, respectively. While the square-root values are
constants for a given constellation set, the F function requires
tanh and division operations. In HLS, we could simply use the
division operator “/” and use tanh(·) from the math library3

for hyperbolic tangent computation in C++. However, such a
naı̈ve approach would be synthesized to complicated logic with
excessively high latency and resource utilization. We therefore

3The tanh(·) function from the math library supports 32-bit and 16-bit
floating-point values, but not fixed-point values. Nevertheless, one could
perform type conversions between fixed-point and floating-point values before
and after calling the tanh(·) function.

TABLE I
RESOURCE UTILIZATION, LATENCY, AND THROUGHPUT FOR VARIOUS

SYSTEM CONFIGURATIONS AT K = 32, U = 8, AND TMAX = 3.

Clusters C 1 2 4
BS antennas B 32 64 128

LUTs (%) 11739 (2.7) 22789 (5.3) 44420 (10.3)
FFs (%) 16429 (1.9) 35080 (4.1) 76270 (8.8)
DSP48s (%) 219 (6.1) 497 (13.8) 1197 (33.3)
BRAM18 2 6 10

Clock freq. [MHz] 429 427 427
Latency [cycles] 310 336 384
Throuhgput [Mb/s] 22.2 20.4 17.8

implement the hyperbolic tangent function and reciprocal unit
using FPGA look-up tables (LUTs).

The hyperbolic tangent unit (“tanh unit” in Fig. 3) takes
a real-valued input p and generates an output q, which is an
approximate value of tanh(p). We first detect the range of p: if
p ≥ 4, then q = 1; if p < −4, then q = −1. If p ∈ [−4, 4), we
use a LUT to get the corresponding approximate tanh(p) value.
Specifically, we create a 2048-entry LUT with a BRAM that
stores the pre-computed tanh results for a certain set of values
{a0, a1, . . . , a2047} which are evaluated at equidistant points
in the range [−4, 4), i.e., ai = (−4)+8i/2048. Given an input
p ∈ [−4, 4), we identify the value am that is closest to p, and
fetch tanh(am) from the LUT to generate an approximate value
of tanh(p). This approach entails only a small approximation
error while avoiding the need for costly tanh functions.

The reciprocal unit (“recip. unit” in Fig. 3) first normalizes
the input value to the range [0.5, 1) by a leading-zeros detector
and a bit shift. Similarly to the tanh LUT, we use a 2048-
entry LUT with a BRAM to store pre-computed reciprocal
values for a certain set of 2048 inputs {b0, b1, . . . , b2047} where
bi = 0.5 + 0.5i/2048. Given a normalized input d ∈ [0.5, 1),
we identify the value bm that is closest to d, fetch the reciprocal
value of bm in the LUT, and denormalize this reciprocal value
by compensating for the initial bit shift to get the final output.

In addition to the above operations, each LAMA itera-
tion requires matrix-vector multiplications and vector addi-
tions/subtractions. The matrix-vector multiplication required
for computing x̂c is realized by a systolic array as discussed
above. The vector addition/subtraction is performed for U
entries in parallel with the #pragma HLS PIPELINE directive
for entry-wise loop pipelining.

3) Result fusion at CPE: The CPE collects C local equal-
ization estimates, i.e., U -entry vectors x̂c, performs weighted
sum of C results for each user entry in parallel with loop
pipelining, and computes the final estimate x̂.

IV. IMPLEMENTATION RESULTS

We now show implementation results for the proposed FD-
LAMA architecture on a single Xilinx Virtex-7 XC7VX690T
FPGA. We benchmark the latency, throughput, and resource
utilization, and compare our design with existing FPGA
implementations for centralized massive MU-MIMO equalizers.

TABLE II
COMPARISON OF CENTRALIZED DATA DETECTORS FOR A B = 128 BS ANTENNA SYSTEM WITH U = 8 UES ON A XILINX VIRTEX-7 XC7VX690T FPGA.

Algorithm CGLS [15] Neumann [16] Gauss-Seidel [17] TASER [18] FD-LAMA
Iterations 3 3 1 3 3
Modulation 64-QAM 64-QAM 64-QAM QPSK QPSK

LUTs (%) 3324 (0.8) 148797 (34) 18976 (4.3) 13779 (3.2) 11673 (2.7)
FFs (%) 3878 (0.4) 161934 (19) 15864 (1.8) 6857 (0.8) 15943 (1.8)
DSP48s (%) 33 (0.9) 1016 (28) 232 (6.3) 163 (5.7) 213 (5.9)
BRAM18 1 16 6 0 2

Clock [MHz] 412 317 309 225 429
Latency [clock cycles] 951 196 – 72 496
Throughput [Mb/s] 20 621 48 50 14

Throughput / LUTs 6017 4173 2530 3629 1186
Normalized at QPSK 2036 1391 783 3629 1186

Table I shows implementation results of FD-LAMA for
various antenna configurations with Tmax = 3 iterations and
QPSK modulation. We fix the number of users U = 8 and
number of antennas per cluster K = 32, and increase the total
number of BS antennas B = CK by increasing the number
of clusters C. For example, when C = {1, 2, 4}, we have a
total number of B = {32, 64, 128} antennas. We see from
Table I that the resource utilization increases roughly linearly
with the number of clusters C, which is also the number
of DPEs in our FPGA design. In contrast, the throughput
degrades only slightly when increasing C, which indicates that
the FD equalization architecture enables one to maintain the
throughput when increasing B simply by increasing the number
of computing fabrics. The use of multiple instances of our FD-
LAMA design on multi-FPGA systems has the potential to
further increase the throughput, which will be affected by the
FPGA-to-FPGA transfer latency and bandwidth.

Table II compares the FD-LAMA design with recently pro-
posed centralized data detectors for massive MU-MIMO [15]–
[18]. All of the referenced designs are implemented using
RTL with HDL, while our FD-LAMA HLS design is directly
synthesized from C++ code; this enables us to easily reconfigure
the parameters C, K, U , and LAMA iterations Tmax as C++
variables. To arrive at a fair comparison, we set C = 1 for
our design resulting in a centralized equalizer. We see that
compared to the existing RTL-based FPGA implementations,
our HLS-based design achieves competitive hardware efficiency
in terms of throughput/LUTs normalized at QPSK modulation,
while enabling higher design flexibility, shorter design cycles,
and improved design scalability with the proposed decentralized
architecture for supporting larger numbers of BS antennas.

While all of our above results are for a centralized version
of our HLS design measured on a single FPGA, a fully-
decentralized implementation on a multi-FPGA system using
high-speed serial interconnect is part of ongoing work.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, June 2014.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag., vol.
52, no. 2, pp. 186–195, Feb. 2014.

[3] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need?,” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[4] http://www.cpri.info, Common public radio interface.
[5] K. Li, R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,

“Decentralized Baseband Processing for Massive MU-MIMO Systems,”
To appear in IEEE J. Emerg. Sel. Topics Circ. Sys., 2017.

[6] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong,
“Argos: Practical Many-antenna Base Stations,” in ACM MobiCOM, Aug.
2012, pp. 53–64.

[7] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. wall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for Massive MIMO,” in IEEE Globecom, Dec. 2014, pp. 287–293.

[8] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang,
“BigStation: Enabling Scalable Real-time Signal Processingin Large MU-
MIMO Systems,” in ACM SIGCOMM, Oct. 2013, pp. 399–410.

[9] K. Li, R. Skaran, Y. Chen, J. R. Cavallaro, T. Goldstein, and C. Studer,
“Decentralized beamforming for massive MU-MIMO on a GPU cluster,”
in IEEE GlobalSIP, Dec. 2016, pp. 590–594.

[10] K. Li, Y. Chen, R. Sharan, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized data detection for massive MU-MIMO on a Xeon Phi
cluster,” in Asilomar Conf. Sig. Sys. Comp., Nov. 2016, pp. 468–472.

[11] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H. P.
Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts,
performance, and field trial results,” IEEE Commun. Mag., vol. 49, no.
2, pp. 102–111, Feb. 2011.

[12] M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key
technologies for 5G heterogeneous cloud radio access networks,” IEEE
Network, vol. 29, no. 2, pp. 6–14, Mar. 2015.

[13] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “On the achievable rates
of decentralized equalization in massive MU-MIMO systems,” in IEEE
Int. Symp. Inf. Theory (ISIT), June 2017, pp. 1102–1106.

[14] C. Jeon, R. Ghods, A. Maleki, and C. Studer, “Optimality of large
MIMO detection via approximate message passing,” in IEEE Int. Symp.
on Inf. Theory (ISIT), June 2015, pp. 1227–1231.

[15] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “VLSI design of large-
scale soft-output MIMO detection using conjugate gradients,” in IEEE
ISCAS, May 2015, pp. 1498–1501.

[16] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer,
“Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA
Implementations,” IEEE J. Sel. Topics Sig. Process., vol. 8, no. 5, pp.
916–929, Oct. 2014.

[17] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, “Efficient architecture
for soft-output massive MIMO detection with Gauss-Seidel method,” in
IEEE ISCAS, May 2016, pp. 1886–1889.

[18] O. Castañeda, T. Goldstein, and C. Studer, “FPGA design of approximate
semidefinite relaxation for data detection in large MIMO wireless
systems,” in IEEE ISCAS, May 2016, pp. 2659–2662.

	Introduction
	Decentralized Baseband Processing
	Contributions

	Fully-Decentralized Equalization via LAMA
	System Model
	Algorithm Details
	Error-Rate Simulation Results

	VLSI Design
	Architecture Overview
	Architecture Details and Optimizations
	Preprocessing at DPE
	LAMA Iterations at the DPE
	Result fusion at CPE

	Implementation Results
	References

